
Introduction to MATLAB

Instructor: Dr. Peter Beerli
(slides: Dr. Ming Ye)

History of MATLAB: 
Fortran and Scientific Computing

• Engineering and scientific applications involve a lot of "number
crunching".

• For many years, the main language for this was FORTRAN -- first
"high level" programming language, and especially designed for
numerical computing.

• Here's a Fortran code to solve a x2 + b x + c = 0:

C Solve a quadratic equation (this is a comment).
 DESC = B*B - 4*A*C
 IF (DESC .LT. 0.0) GOTO 10
 DESC = SQRT(DESC)
 X1 = (-B + DESC)/(2.0*A)
 X2 = (-B - DESC)/(2.0*A)
 WRITE(6,*) "SOLUTIONS ARE ",X1," AND ", X2
 RETURN
 10 WRITE(6,*) "EQUATION HAS COMPLEX ROOTS"
 RETURN

Problems using FORTRAN
“Number crunching” on a computer can be tricky.
Problems that occur are:
• loss of precision and inaccurate results: 
X = 0.1  
Y = 1.0 - 10*X

 Y "should" equal 0, but probably does not!
• underflow and overflow: X = 1.0E20, X*X -->

too big!
• efficient coding of algorithms not always obvious
• programming errors!

Numerical Libraries
• The U.S. government recognized these problems, and

the inefficiency of many engineers all writing the same
algorithms... again and again.

• So, they commissioned numerical analysts to write good
quality algorithms for common tasks.

• Make the results freely available as "libraries" of
subroutines that anyone can use in their programs.

• Libraries are available at: www.netlib.org

Examples of Numerical Libraries
• BLAS (Basic Linear Algebra Subroutines): operations on

vectors, like adding to vectors, dot product, norm.
• LINPACK: linear algebra subroutines for vector-matrix

operations, solving linear systems, factoring a matrix,
inverting a matrix. Later replaced by LAPACK.

• EISPACK: compute eigenvalues and eigenvectors of
matrices.

• Example: solve A*x = b using LINPACK

C.... factor the A matrix
 CALL SGEFA(A, N, N, IPVT, INFO)
C.... copy B vector into X vector
 CALL SCOPY(N, B, 1, X, 1)
C.... solve the system of equations
 CALL SGESL(A, N, N, IPVT, X, 0)

MATLAB (Matrix Laboratory)
History of MATLAB (mainly from Wikipedia)
• Ancestral software to MATLAB

– Fortran subroutines for solving linear (LINPACK) and eigenvalue
(EISPACK) problems

– Developed primarily by Cleve Moler in the 1970’s, mathematician,
once chairman of the computer science department at the University
of New Mexico

• When teaching courses in mathematics, Moler wanted his
students to be able to use LINPACK and EISPACK without
requiring knowledge of Fortran

• MATLAB developed as an interactive system to access
LINPACK and EISPACK

• It soon spread to other universities and found a strong
audience within the applied mathematics community.

• MATLAB gained popularity primarily through word of mouth
because it was not officially distributed

History of MATLAB
• Jack Little, an engineer, was exposed to it during a visit

Moler made to Stanford University in 1983. Recognizing
its commercial potential, he joined with Moler and Steve
Bangert. They rewrote MATLAB in C with more
functionality (such as plotting routines) and founded
The MathWorks in 1984 to continue its development.

• The Mathworks is now responsible for development,
sale, and support for MATLAB

• MATLAB was first adopted by control design engineers,
Little's specialty, but quickly spread to many other
domains. It is now also used in education, in particular
the teaching of linear algebra and numerical analysis.

• A standard tool in both professional and academic use
with millions of users

Software Principles

MATLAB illustrates some useful design
concepts for software.

FORTRAN Compiler

Linear Algebra Libraries

MATLAB

MATLAB "Toolkits"MATLAB "M-Files"

Standard base platform

Modular, reusable software
components

Extensible using "Toolkits" or
user-contributed programs
called M-files.

Interactive user interface;
hides boring details

MATLAB Toolbox

"Toolboxes" providing functions for many applications:
– Symbolic Math Toolbox: mathematical manipulation of

symbols
– Partial Differential Equation Toolbox: tools for solving PDEs

in 2-D
– Statistics Toolbox: statistical data analysis
– Image processing toolbox: visualization and image analysis
– Bioinformatics toolbox: computational molecular biology
– Compiler: application development
– Many many more.

Running MATLAB
• MATLAB is installed on the classroom machines

University license can be purchase at
 http://its.fsu.edu/Software/SoftwareLicensing/

Mathworks-MATLAB
 We will spend about three weeks to introduce

MATLAB.
• You will master MATLAB by practicing (homework

and projects) and self-learning (let MATLAB help
you)

• Useful tutorial material:
– Links http://www.mathworks.com/academia/

student_center/tutorials/launchpad.html
– Many other online resources

http://its.fsu.edu/Software/SoftwareLicensing/Mathworks-MATLAB
http://its.fsu.edu/Software/SoftwareLicensing/Mathworks-MATLAB
http://its.fsu.edu/Software/SoftwareLicensing/Mathworks-MATLAB
http://its.fsu.edu/Software/SoftwareLicensing/Mathworks-MATLAB

https://octave-online.net

• Online octave to experiment with Matlab
commands

MATLAB Desktop
• Command window
✓Type the commands (2+2;x=3;sin(100))
✓MATLAB is case sensitive
✓Virtually all numerical computations in MATLAB are

performed by typing commands, not by manipulating menus.
• Current Directory Browser and Workspace Browser

There are tabs for alternating between the two
browsers
✓Workspace: the complete collection of defined variables
✓Clear/Save/Load workspace by typing

• Command History Window
✓Save time of typing commands
✓Right click a command to view all options

matlab onramp has a tutorial and video
instructions, ideally we could acces this
though the site license — but I need a
student ID to check

Exercise

Step 1:
>>fun=sin(pi/4)
Step 2:
>>format long
Step 3:
>>fun
What do you observe?
Can you explain?

Let MATLAB Help YOU!
• MATLAB has extensive online help.
• Quick launch by typing “doc” or clicking the (?)

symbol on the menu bar
• Type “help” in the command prompt
 A long list of topics for which help is available
• Type “help plot” and “doc plot”
 Help/document file for the “plot” command
• Type “lookfor plot”
 Search the first line of every MATLAB help files for a

specified string (plot here)
• “More on” and “more off” for better display
 Tell me what these two commands are for

Let OCTAVE Help YOU!
• Octave has extensive online help.
• Quick launch by typing “doc” or clicking the (?)

symbol on the menu bar
• Type “help” in the command prompt
 A long list of topics for which help is available
• Type “help plot” and “doc plot”
 Help/document file for the “plot” command
• Type “lookfor plot”
 Search the first line of every MATLAB help files for a

specified string (plot here)
• “More on” and “more off” for better display
 Tell me what these two commands are for

Why MATLAB?
• tons of basic "libraries" or functions available
• many more complicated "toolboxes" can be added
• Interpreted and interactive, no compiling
 >>a=3
 >>b=2
 >>c=a+b
• In a sequence of commands, the intermediate values may not

be interesting or the echoing of values to the command window
might be distraction.

• The output of individual command may be suppressed by
appending a semicolon to the end of the expression:

 >>a=3;
 >>b=2;
 >>c=a+b
 or a=3; b=2; c=a+b

Why MATLAB?

• Easy debugging and errors are easier to fix
 >>c=a+b+d
• Any variable appearing at the right-hand side of

the equals sign must already be defined.
• A variable is created whenever it appears on the

left-hand side of the equal sign.
• The value stored in a variable can be changed by

a subsequent assignment
 >> a=5; a=a+2
• Watch the value of “a” in the workspace.
• The names of variables can be up to 31

characters long.

Why MATLAB?
• Everything is a matrix
Square brackets,[], are used to delimit vector and matrices.
>>a=[1 2 3 4 5] (try a=(1 2 3 4 5))
or a=1:5, or a=[1:5], or a=[1:1:5] (colon notation)
>>a(3) (try a[3])
>>length(a)

>>b=‘some string’
>>b(3)
>>length(b)
• MATLAB code is optimized to be relatively quick and easy

when performing matrix operations
>>b=3*a
>>c=a’*a

Vector and Matrix: Basics

• A vector is an ordered list of numbers
 X=[2 4 6 8]
 X(3)=?
• A matrix is a rectangular array of members
 A=[1 2 3 4;
 5 6 7 8;
 9 10 11 12]
 A(2,3)=?

Why MATLAB?

• In-house graphics capabilities for
visualization

>>plot(a,b)
>> xlabel('Icecream consumption (g)')
>>ylabel('Weight (Pounds)')
>>title('Relationship between Y and X')
>>figure(2)

Why MATLAB?

• Easy to learn and fast development times
• tri-development: interactive, scripts, and functions
• Exercise

show as

2
2

1
1

6

n

i
i π

=

→∑ n→∞

Consider n=100
Demonstration for each n can be done in several lines.

Why MATLAB?

>>exact=(pi^2)/6;
>>n=100;
>>i=[1:n];
>>i=i.^2;
>>i=1./i;
>>approx=sum(i);
>>exact-approx
I want to try n=1000, but I do not want to type all
these lines. What should I do?

MATLAB Programming

• There are two different kinds of MATLAB
programs: script and functions.

• There are stored in plain text files that end
with the extension “.m”, called m-files.

• You can create and edit an m-file within
MATLAB by typing “edit filename” in the
command window or outside MATLAB
using any text editor.

Generate an m-file from the Command
History Window

• You can highlight commands in the Command
History window, right click, and choose Create m-
file.

• As with other applications, use Shift-click to add
items to the selection and Ctrl-click to remove
items from the selection.

• Save the file as “Exercise_1.m” or any file of your
preference.

• Run the script m-file in the command window by
typing >>Exercise_1

• Change n from 100 to 1000 and then 10000, and
run the program. What do you observe?

More on Script m-files and
Programming Style

• Scripts are just sequences of interactive statements
stored in a file.

• Typing the name of the script at the command prompt has
the same effect as typing the contents of the script file at
the command prompt.

• Script files have no input and output parameters; hence
they are most useful for those tasks that never change.

• Do you like or are you content about the m-file?
• A programming style consists of

– Visual appearance of the code
– Conventions used for variable names
– Documentation with comment statements

Why MATLAB?
• The Good:
• The Bad:

– small coding mistakes can result in slow code
– loops are extremely computationally intensive
– language is limited: no templates, classes etc.
– as an interpreted language, MATLAB is slower than a

compiled language such as C++
• The Ugly:

– proprietary (but the language format is open)
– expensive
– the open source substitute, GNU Octave, is not fully

compatible (http://www.gnu.org/software/octave/
index.html)

Basics of Linear Algebra

Instructor: Dr. Ming Ye

Vectorize!

• The single most effective aspect in Matlab in
order to build efficient code.

 Run test functions test1 and test 2.
• Vectorize whenever you can.
• Avoid loop whenever you can.
• All built-in functions in MATLAB are vectorized,

meaning that, if given a vector as inputs, the
operation denoted by the name of the function is
applied to all elements of the vector.

• The array operations are VERY important. Be
careful about location of the period.

Vector Operations

• Addition and Subtraction
• Multiplication by a scalar
• Transpose
• Linear Combinations of Vectors
• Inner Product
• Outer Product

Define Vectors in MATLAB

Matrices

• Columns and Rows of a Matrix are Vectors
• Addition and Subtraction
• Multiplication by a scalar
• Transpose
• Matrix–Vector Product
• Matrix–Matrix Product

Row View of Matrix-Vector Product

Row View of Matrix-Matrix Product

Exercise
• Write a MATLAB statement to manually enter matrix A
 1 2 3
 4 5 6
 7 8 9
• Obtain the matrix B
 7 8 9
 4 5 6
 1 2 3
• Do not enter matrix B manually but use “lookfor flip” to

find the MATLAB function for this operation.

Exercise

• Manually compute C=AB for

and check your result using MATLAB

1 1
2 3
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

A
3 1
2 1

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

B

Exercise
• Create the following vector using MATLAB function ones
 [2 2 2 2]
• Create the following diagonal matrix using MATLAB functions ones

and diag or eye
 2 0 0 0
 0 2 0 0
 0 0 2 0
 0 0 0 2
• Create the following diagonal matrix using MATLAB functions ones

and diag
 2 -1 0 0
 -1 2 -1 0
 0 -1 2 -1
 0 0 -1 2

