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Primary Topics

• Vectors
• Matrices
• Mathematical Properties of Vectors and Matrices
• Special Matrices
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Notation

Variable

type Typographical Convention Example

scalar lower case Greek σ, α, β

vector lower case Roman u, v, x, y, b

matrix upper case Roman A, B, C
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Defining Vectors in Matlab

• Assign any expression that evaluates to a vector
>> v = [1 3 5 7]
>> w = [2; 4; 6; 8]
>> x = linspace(0,10,5);
>> y = 0:30:180
>> z = sin(y*pi/180);

• Distinquish between row and column vectors
>> r = [1 2 3]; % row vector
>> s = [1 2 3]’; % column vector
>> r - s
??? Error using ==> -
Matrix dimensions must agree.

Although r and s have the same elements, they are not the
same vector. Furthermore, operations involving r and s are
bound by the rules of linear algebra.
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Vector Operations

• Addition and Subtraction
• Multiplication by a scalar
• Transpose
• Linear Combinations of Vectors
• Inner Product
• Outer Product
• Vector Norms
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Vector Addition and Subtraction

Addition and subtraction are element-by-element operations

c = a+ b ⇐⇒ ci = ai + bi i = 1, . . . , n

d = a− b ⇐⇒ di = ai − bi i = 1, . . . , n

Example:

a =


1

2

3


 b =


3

2

1




a+ b =


4

4

4


 a− b =


 −2

0

2



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Multiplication by a Scalar

Multiplication by a scalar involves multiplying each element in

the vector by the scalar:

b = σa ⇐⇒ bi = σai i = 1, . . . , n

Example:

a =


4

6

8


 b =

a

2
=


2

3

4



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Vector Transpose

The transpose of a row vector is a column vector:

u =
[
1, 2, 3

]
then u

T
=


1

2

3




Likewise if v is the column vector

v =


4

5

6


 then v

T
=

[
4, 5, 6

]
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Linear Combinations (1)

Combine scalar multiplication with addition

α



u1

u2
...

um


 + β



v1

v2
...

vm


 =



αu1 + βv1

αu2 + βv2
...

αum + βvm


 =



w1

w2
...

wm




Example:

r =


 −2

1

3


 s =


1

0

3




t = 2r + 3s =


 −4

2

6


 +


3

0

9


 =


 −1

2

15



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Linear Combinations (2)

Any one vector can be created from an infinite combination of

other “suitable” vectors.

Examples:

w =

[
4

2

]
= 4

[
1

0

]
+ 2

[
0

1

]

w = 6

[
1

0

]
− 2

[
1

−1

]

w =

[
2

4

]
− 2

[−1

1

]

w = 2

[
4

2

]
− 4

[
1

0

]
− 2

[
0

1

]
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Linear Combinations (3)

Graphical interpretation:

• Vector tails can be moved to convenient locations
• Magnitude and direction of vectors is preserved

[1,0]

[0,1]

[2,4]

[1,-1]

[4,2]
[-1,1]

[1,1]

0 1 2 3 4 5 6

0

1

2

3

4
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Vector Inner Product (1)

In physics, analytical geometry, and engineering, the dot
product has a geometric interpretation

σ = x · y ⇐⇒ σ =

n∑
i=1

xiyi

x · y = ‖x‖2 ‖y‖2 cos θ
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Vector Inner Product (2)

The rules of linear algebra impose compatibility requirements on

the inner product.

The inner product of x and y requires that x be a row vector y

be a column vector

[
x1 x2 x3 x4

]


y1

y2

y3

y4


 = x1y1 + x2y2 + x3y3 + x4y4
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Vector Inner Product (3)

For two n-element column vectors, u and v, the inner product is

σ = u
T
v ⇐⇒ σ =

n∑
i=1

uivi

The inner product is commutative so that

(for two column vectors)

u
T
v = v

T
u
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Computing the Inner Product in Matlab

The * operator performs the inner product if two vectors are
compatible.

>> u = (0:3)’; % u and v are
>> v = (3:-1:0)’; % column vectors
>> s = u*v
??? Error using ==> *
Inner matrix dimensions must agree.

>> s = u’*v
s =

4

>> t = v’*u
t =

4
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Vector Outer Product

The inner product results in a scalar.

The outer product creates a rank-one matrix:

A = uv
T ⇐⇒ ai,j = uivj

Example: Outer product of two 4-element column vectors

uv
T

=



u1

u2

u3

u4


 [
v1 v2 v3 v4

]

=



u1v1 u1v2 u1v3 u1v4

u2v1 u2v2 u2v3 u2v4

u3v1 u3v2 u3v3 u3v4

u4v1 u4v2 u4v3 u4v4



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Computing the Outer Product in Matlab

The * operator performs the outer product if two vectors are
compatible.

u = (0:4)’;
v = (4:-1:0)’;
A = u*v’
A =

0 0 0 0 0
4 3 2 1 0
8 6 4 2 0

12 9 6 3 0
16 12 8 4 0
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Vector Norms (1)

Compare magnitude of scalars with the absolute value

∣∣α∣∣ > ∣∣β∣∣
Compare magnitude of vectors with norms

‖x‖ > ‖y‖

There are several ways to compute ||x||. In other words the size
of two vectors can be compared with different norms.
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Vector Norms (2)

Consider two element vectors, which lie in a plane

a = (4,2)

b = (2,4)

a = (4,2)c = (2,1)

Use geometric lengths to represent the magnitudes of the vectors

�a =
√

42 + 22 =
√

20

�b =
√

22 + 42 =
√

20

�c =
√

22 + 12 =
√

5

We conclude that

�a = �b and �a > �c

or

‖a‖ = ‖b‖ and ‖a‖ > ‖c‖
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The L2 Norm

The notion of a geometric length for 2D or 3D vectors can be

extended vectors with arbitrary numbers of elements.

The result is called the Euclidian or L2 norm:

‖x‖2 =
(
x

2
1 + x

2
2 + . . .+ x

2
n

)1/2
=

(
n∑
i=1

x
2
i

)1/2

The L2 norm can also be expressed in terms of the inner product

‖x‖2 =
√
x · x =

√
xTx
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p-Norms

For any integer p

‖x‖p =
(|x1|p + |x2|p + . . .+ |xn|p

)1/p

The L1 norm is sum of absolute values

‖x‖1 = |x1| + |x2| + . . .+ |xn| =

n∑
i=1

|xi|

The L∞ norm or max norm is

‖x‖∞ = max (|x1|, |x2|, . . . , |xn|) = max
i

(|xi|)

Although p can be any positive number, p = 1, 2,∞ are most

commonly used.
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Application of Norms

Are two vectors (nearly) equal?

Floating point comparison of two scalars with absolute value:∣∣α− β∣∣∣∣α∣∣ < δ

where δ is a small tolerance.

Comparison of two vectors with norms:

‖y − z‖
‖z‖ < δ

Notice that preceding statement is not equivalent to

‖y‖ − ‖z‖
‖z‖ < δ
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Orthogonal Vectors

From geometric interpretation of the inner product

u · v = ‖u‖2 ‖v‖2 cos θ

cos θ =
u · v

‖u‖2 ‖v‖2

=
uTv

‖u‖2 ‖v‖2

Two vectors are orthogonal when θ = π/2 or u · v = 0.

In other words

u
T
v = 0

if and only if u and v are orthogonal.
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Orthonormal Vectors

Orthonormal vectors are unit vectors that are orthogonal.

A unit vector has an L2 norm of one.

The unit vector in the direction of u is

û =
u

‖u‖2

Since

‖u‖2 =
√
u · u

it follows that u · u = 1 if u is a unit vector.

NMM: A Review of Linear Algebra page 23



Matrices

• Columns and Rows of a Matrix are Vectors
• Addition and Subtraction
• Multiplication by a scalar
• Transpose
• Linear Combinations of Vectors
• Matrix–Vector Product
• Matrix–Matrix Product
• Matrix Norms
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Notation

The matrix A with m rows and n columns looks like:

A =



a11 a12 · · · a1n

a21 a22 a2n
... ...

am1 · · · amn




aij = element in row i, and column j

In Matlab we can define a matrix with

>> A = [ ... ; ... ; ... ]

where semicolons separate lists of row elements.

The a2,3 element of the Matlab matrix A is A(2,3).
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Matrices Consist of Row and Column Vectors

As a collection of column vectors

A =


a(1)

∣∣∣∣∣∣∣∣∣∣∣
a(2)

∣∣∣∣∣∣∣∣∣∣∣
· · ·

∣∣∣∣∣∣∣∣∣∣∣
a(n)




As a collection of row vectors

A =




a′(1)

a′(2)

...

a′(m)




A prime is used to designate a row vector on this and the

following pages.
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Preview of the Row and Column View

Matrix and
vector operations

←→ Row and column
operations

←→ Element-by-element
operations
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Matrix Operations

• Addition and subtraction
• Multiplication by a Scalar
• Matrix Transpose
• Matrix–Vector Multiplication
• Vector–Matrix Multiplication
• Matrix–Matrix Multiplication
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Matrix Operations

Addition and subtraction

C = A+ B

or

ci,j = ai,j + bi,j i = 1, . . . ,m; j = 1, . . . , n

Multiplication by a Scalar

B = σA

or

bi,j = σai,j i = 1, . . . ,m; j = 1, . . . , n

Note: Commas in subscripts are necessary when the
subscripts are assigned numerical values. For example,

a2,3 is the row 2, column 3 element of matrix A,

whereas a23 is the 23rd element of vector a. When

variables appear in indices, such as aij or ai,j, the

comma is optional
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Matrix Transpose

B = A
T

or

bi,j = aj,i i = 1, . . . ,m; j = 1, . . . , n

In Matlab

>> A = [0 0 0; 0 0 0; 1 2 3; 0 0 0]
A =

0 0 0
0 0 0
1 2 3
0 0 0

>> B = A’
B =

0 0 1 0
0 0 2 0
0 0 3 0
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Matrix–Vector Product

• The Column View
$ gives mathematical insight

• The Row View
$ easy to do by hand

• The Vector View
$ A square matrice rotates and stretches a vector
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Column View of Matrix–Vector Product (1)

Consider a linear combination of a set of column vectors
{a(1), a(2), . . . , a(n)}. Each a(j) has m elements

Let xi be a set (a vector) of scalar multipliers

x1a(1) + x2a(2) + . . .+ xna(n) = b

or
n∑
j=1

a(j)xj = b

Expand the (hidden) row index

x1



a11

a21
...

am1


 + x2



a12

a22
...

am2


 + · · · + xn



a1n

a2n
...

amn


 =



b1
b2
...

bm




NMM: A Review of Linear Algebra page 32



Column View of Matrix–Vector Product (2)

Form a matrix with the a(j) as columns


a(1)

∣∣∣∣∣∣∣∣∣∣∣
a(2)

∣∣∣∣∣∣∣∣∣∣∣
· · ·

∣∣∣∣∣∣∣∣∣∣∣
a(n)






x1

x2
...

xn


 =


b




Or, writing out the elements


a11 a12 · · · a1n

a21 a22 · · · a2n

... ... ...

am1 am2 · · · amn






x1

x2
...

xn


 =




b1
b2

...

bm




Save space with matrix notation

Ax = b
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Column View of Matrix–Vector Product (3)

The matrix–vector product b = Ax

produces a vector b from a linear
combination of the columns in A.

b = Ax ⇐⇒ bi =

n∑
j=1

aijxj

where x and b are column vectors
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Column View of Matrix–Vector Product (4)

Algorithm 7.1

initialize: b = zeros(n, 1)
for j = 1, . . . , n

for i = 1, . . . ,m

b(i) = A(i, j)x(j) + b(i)

end

end
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Compatibility Requirement

Inner dimensions must agree

A x = b

[m× n] [n× 1] = [m× 1]

NMM: A Review of Linear Algebra page 36



Row View of Matrix–Vector Product (1)

Consider the following matrix–vector product written out as a

linear combination of matrix columns


 5 0 0 −1

−3 4 −7 1

1 2 3 6







4

2

−3

−1




= 4


 5

−3

1


 + 2


 0

4

2


 − 3


 0

−7

3


 − 1


 −1

1

6




This is the column view.
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Row View of Matrix–Vector Product (2)

Now, group the multiplication and addition operations by row:

4


 5

−3

1


 + 2


 0

4

2


 − 3


 0

−7

3


 − 1


 −1

1

6




=


 (5)(4) + (0)(2) + (0)(−3) + (−1)(−1)

(−3)(4) + (4)(2) + (−7)(−3) + (1)(−1)

(1)(4) + (2)(2) + (3)(−3) + (6)(−1)


 =


 21

16

−7




Final result is identical to that obtained with the column view.
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Row View of Matrix–Vector Product (3)

Product of a 3 × 4 matrix, A, with a 4 × 1 vector, x, looks like


a′(1)

a′(2)

a′(3)






x1

x2

x3

x4


 =



a′(1) · x
a′(2) · x
a′(3) · x


 =


b1b2
b3




where a′(1), a
′
(2), and a

′
(3), are the row vectors constituting the

A matrix.

The matrix–vector product b = Ax

produces elements in b by forming
inner products of the rows of A with x.
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Row View of Matrix–Vector Product (4)

i

=
i

x yia'(i )
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Vector View of Matrix–Vector Product

If A is square, the product Ax has the effect of stretching and

rotating x.

Pure stretching of the column vector


2 0 0

0 2 0

0 0 2





1

2

3


 =


2

4

6




Pure rotation of the column vector
0 −1 0

1 0 0

0 0 1





1

0

0


 =


0

1

0



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Vector–Matrix Product

Matrix–vector product

=

n   1m   n m   1

Vector–Matrix product

=

1    m m    n 1    n

Compatibility Requirement: Inner dimensions must agree

u A = v

[1 ×m] [m× n] = [1 × n]
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Matrix–Matrix Product

Computations can be organized in six different ways We’ll
focus on just two

• Column View — extension of column view of matrix–vector
product

• Row View — inner product algorithm, extension of column
view of matrix–vector product
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Column View of Matrix–Matrix Product

The product AB produces a matrix C. The columns of C are

linear combinations of the columns of A.

AB = C ⇐⇒ c(j) = Ab(j)

c(j) and b(j) are column vectors.

ji

=

A b( j ) c( j )

j

r

The column view of the matrix–matrix product AB = C is

helpful because it shows the relationship between the columns of

A and the columns of C.
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Inner Product (Row) View of Matrix–Matrix
Product

The product AB produces a matrix C. The cij element is the

inner product of row i of A and column j of B.

AB = C ⇐⇒ cij = a
′
(i)b(j)

a′(i) is a row vector, b(j) is a column vector.

j

i

=
cij

r

j
i

b( j ) cija'(i )

The inner product view of the matrix–matrix product is easier to

use for hand calculations.
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Matrix–Matrix Product Summary (1)

The Matrix–vector product looks like:



• • •
• • •
• • •
• • •





•
•
•


 =



•
•
•
•




The vector–Matrix product looks like:

[• • • •]


• • •
• • •
• • •
• • •


 =

[• • •]

The Matrix–Matrix product looks like:



• • •
• • •
• • •
• • •





• • • •
• • • •
• • • •


 =



• • • •
• • • •
• • • •
• • • •



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Matrix–Matrix Product Summary (2)

Compatibility Requirement

A B = C

[m× r] [r × n] = [m× n]

Inner dimensions must agree

Also, in general

AB �= BA
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Matrix Norms

The Frobenius norm treats a matrix like a vector: just add up

the sum of squares of the matrix elements.

‖A‖F =

[ m∑
i=1

n∑
j=1

|aij|2
]1/2

More useful norms account for the affect that the matrix has on

a vector.

‖A‖2 = max
‖x‖2=1

‖Ax‖2 L2 or spectral norm

‖A‖1 = max
1≤j≤n

m∑
i=1

|aij| column sum norm

‖A‖∞ = max
1≤i≤m

n∑
j=1

|aij| row sum norm
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Mathematical Properties of Vectors and Matrices

• Linear Independence
• Vector Spaces
• Subspaces associated with matrices
• Matrix Rank
• Matrix Determinant
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Linear Independence (1)

Two vectors lying along the same line are not independent

u =


1

1

1


 and v = −2u =


−2

−2

−2




Any two independent vectors, for example,

v =


−2

−2

−2


 and w =


0

0

1




define a plane. Any other vector in this plane of v and w can be

represented by

x = αv + βw

x is linearly dependent on v and w because it can be formed
by a linear combination of v and w.
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Linear Independence (2)

A set of vectors is linearly independent if it is impossible to use a

linear combination of vectors in the set to create another vector

in the set.

Linear independence is easy to see for vectors that are

orthogonal, for example,




4

0

0

0


 ,




0

−3

0

0


 ,




0

0

1

0




are linearly independent.
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Linear Independence (3)

Consider two linearly independent vectors, u and v.

If a third vector, w, cannot be expressed as a linear combination

of u and v, then the set {u, v, w} is linearly independent.

In other words, if {u, v, w} is linearly independent then

αu+ βv = δw

can be true only if α = β = δ = 0.

More generally, if the only solution to

α1v(1) + α2v(2) + · · · + αnv(n) = 0 (1)

is α1 = α2 = . . . = αn = 0, then the set

{v(1), v(2), . . . , v(n)} is linearly independent

Conversely, if equation (1) is satisfied by at least one nonzero

αi, then the set of vectors is linearly dependent.
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Linear Independence (4)

Let the set of vectors {v(1), v(2), . . . , v(n)} be organized as the
columns of a matrix. Then the condition of linear independence

is 
 v(1)

∣∣∣∣∣∣∣∣∣∣∣
v(2)

∣∣∣∣∣∣∣∣∣∣∣
· · ·

∣∣∣∣∣∣∣∣∣∣∣
v(n)






α1

α2
...

αn


 =



0

0
...

0


 (2)

The columns of the m × n matrix,
A, are linearly independent if and only
if x = (0, 0, . . . , 0)T is the only n
element column vector that satisfies
Ax = 0.
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Vector Spaces

• Spaces and Subspaces
• Span of a Subspace
• Basis of a Subspace
• Subspaces associated with Matrices
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Spaces and Subspaces

Group vectors according to number of elements they have.

Vectors from these different groups cannot be mixed.

R1 = Space of all vectors with one element. These

vectors define the points along a line.

R2 = Space of all vectors with two elements.

These vectors define the points in a plane.

Rn = Space of all vectors with n elements.

These vectors define the points in an n-

dimensional space (hyperplane).

NMM: A Review of Linear Algebra page 55



Subspaces

The three vectors

u =


 1

2

0


 , v =


 −2

1

3


 , w =


 3

1

−3


 ,

lie in the same plane. The vectors have three elements each, so

they belong to R3, but they span a subspace of R3.

-4

-2

0

2

4

-4

-2

0

2

4

-5

0

5

x axis

[-2,1,3] T

[1,2,0]T

[3,1,-3] T

y axis
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Span of a Subspace

If w can be created by the linear combination

β1v(1) + β2v(2) + · · · + βnv(n) = w

where βi are scalars, then w is said to be in the subspace that is

spanned by {v(1), v(2), . . . , v(n)}.

If the vi have m elements, then the subspace spanned by the

v(i) is a subspace of R
m. If n ≥ m it is possible, though not

guaranteed, that the v(i) could span Rm.
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Basis and Dimension of a Subspace

➣ A basis for a subspace is a set of linearly independent
vectors that span the subspace.

➣ Since a basis set must be linearly independent, it also must

have the smallest number of vectors necessary to span the

space. (Each vector makes a unique contribution to spanning

some other direction in the space.)

➣ The number of vectors in a basis set is equal to the

dimension of the subspace that these vectors span.

➣ Mutually orthogonal vectors (an orthogonal set) form

convenient basis sets, but basis sets need not be orthogonal.
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Subspaces Associated with Matrices

The matrix–vector product

y = Ax

creates y from a linear combination of the columns of A

The column vectors of A form a basis for the column space or
range of A.
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Matrix Rank

The rank of a matrix, A, is the number of linearly independent
columns in A.

rank(A) is the dimension of the column space of A.

Numerical computation of rank(A) is tricky due to roundoff.

Consider

u =


 1

0

0.00001


 v =


0

1

0


 w =


1

1

0




Do these vectors span R3? What if u3 = εm?
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Matrix Rank (2)

We can use Matlab’s built-in rank function for exploratory
calculations on (relatively) small matrices

Examples:

>> A = [1 0 0; 0 1 0; 0 0 1e-5] % A(3,3) is small
A =

1.0000 0 0
0 1.0000 0
0 0 0.0000

>> rank(A)
ans =

3

>> A(3,3) = eps/2 % A(3,3) is even smaller
A =

1.0000 0 0
0 1.0000 0
0 0 0.0000

>> rank(A)
ans =

2

Even though A(3,3) is not identically zero, it is small enough
that the matrix is numerically rank-deficient
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Matrix Determinant (1)

• Only square matrices have determinants.
• The determinant of a (square) matrix is a scalar.
• If det(A) = 0, then A is singular, and A−1 does not exist.

• det(I) = 1 for any identity matrix I.

• det(AB) = det(A) det(B).

• det(AT ) = det(A).

• Cramer’s rule uses (many!) determinants to express the the
solution to Ax = b.

The matrix determinant has a number of useful properties:
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Matrix Determinant (2)

• det(A) is not useful for numerical computation

$ Computation of det(A) is expensive

$ Computation of det(A) can cause overflow

• For diagonal and triangular matrices, det(A) is the product

of diagonal elements

• The built in det computes the determinant of a matrix by
first factoring it into A = LU , and then computing

det(A) = det(L) det(U)

=
(
�11�22 . . . �nn

)(
u11u22 . . . unn

)

NMM: A Review of Linear Algebra page 63



Special Matrices

• Diagonal Matrices
• Tridiagonal Matrices
• The Identity Matrix
• The Matrix Inverse
• Symmetric Matrices
• Positive Definite Matrices
• Orthogonal Matrices
• Permutation Matrices
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Diagonal Matrices (1)

Diagonal matrices have non-zero elements only on the main

diagonal.

C = diag (c1, c2, . . . , cn) =



c1 0 · · · 0

0 c2 0
... . . . ...

0 0 · · · cn




The diag function is used to either create a diagonal matrix
from a vector, or and extract the diagonal entries of a matrix.

>> x = [1 -5 2 6];
>> A = diag(x)
A =

1 0 0 0
0 -5 0 0
0 0 2 0
0 0 0 6
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Diagonal Matrices (2)

The diag function can also be used to create a matrix with
elements only on a specified super -diagonal or sub-diagonal.

Doing so requires using the two-parameter form of diag:

>> diag([1 2 3],1)
ans =

0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

>> diag([4 5 6],-1)
ans =

0 0 0 0
4 0 0 0
0 5 0 0
0 0 6 0
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Identity Matrices (1)

An identity matrix is a square matrix with ones on the main

diagonal.

Example: The 3 × 3 identity matrix

I =


1 0 0

0 1 0

0 0 1




An identity matrix is special because

AI = A and IA = A

for any compatible matrix A. This is like multiplying by one in

scalar arithmetic.
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Identity Matrices (2)

Identity matrices can be created with the built-in eye function.

>> I = eye(4)
I =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Sometimes In is used to designate an identity matrix with n

rows and n columns. For example,

I4 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1



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Identity Matrices (3)

A non-square, identity-like matrix can be created with the

two-parameter form of the eye function:

>> J = eye(3,5)
J =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

>> K = eye(4,2)
K =

1 0
0 1
0 0
0 0

J and K are not identity matrices!
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Matrix Inverse (1)

Let A be a square (i.e. n× n) with real elements. The inverse
of A is designated A−1, and has the property that

A
−1
A = I and AA

−1
= I

The formal solution to Ax = b is x = A−1b.

Ax = b

A
−1
Ax = A

−1
b

Ix = A
−1
b

x = A
−1
b
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Matrix Inverse (2)

Although the formal solution to Ax = b is x = A−1b, it is

considered bad practice to evaluate x this way. The

recommended procedure for solving Ax = b is Gaussian

elimination (or one of its variants) with backward substitution.

This procedure is described in detail in Chapter 8.

Solving Ax = b by computing x = A−1b requires more work

(more floating point operations) than Gaussian elimination. Even

if the extra work does not cause a problem with execution speed,

the extra computations increase the roundoff errors in the result.

If A is small (say 50 × 50 or less) and well conditioned, the

penalty for computing A−1b will probably not be significant.

Nonetheless, Gaussian elimination is preferred.
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Functions to Create Special Matrices

Matrix Matlab function

Diagonal diag

Tridiagonal tridiags (NMM Toolbox)

Identity eye

Inverse inv
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Symmetric Matrices

If A = AT , then A is called a symmetric matrix.

Example:


 5 −2 −1

−2 6 −1

−1 −1 3




Note: B = ATA is symmetric for any (real) matrix A.
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Tridiagonal Matrices

Example:




2 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 2


 .

The diagonal elements need not be equal. The general form of a

tridiagonal matrix is

A =




a1 b1
c2 a2 b2

c3 a3 b3
. . . . . . . . .

cn−1 an−1 bn−1

cn an



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To Do

Add slides on:

• Tridiagonal Matrices
• Positive Definite Matrices
• Orthogonal Matrices
• Permutation Matrices
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