
Iteration, aka For and While

x = sqrt(1 + x)

Class Exercise: Numerical Integration

Trapezoidal rule
• Divide the integration

interval into a number of
panels

• Calculate the area below
the function for each
panel.

• Sum the areas together.

()
b

a
f x dx∫

1
1 2 3 2 1

1 1() ...
2 2

nx

n n nx
f x dx h f f f f f f− −

⎡ ⎤≈ + + + + + +⎢ ⎥⎣ ⎦∫

2

0

2

0

x

sixdx

xe dx

π

π −

∫

∫

How to specify a function?

>> help function_handle

 FUNHANDLE = @FUNCTION_NAME returns a handle to the named function,

 FUNCTION_NAME. A function handle is a MATLAB value that provides a

 means of calling a function indirectly. You can pass function

 handles in calls to other functions (which are often called function

 functions). You can also store function handles in data structures for

 later use (for example, as Handle Graphics callbacks). A function

 handle is one of the standard MATLAB data types. Its class is

 'function_handle'.

 FUNHANDLE = @(ARGLIST)EXPRESSION constructs an anonymous function and

 returns a handle to that function. The body of the function, to the

 right of the parentheses, is a single MATLAB expression. ARGLIST is a

 comma-separated list of input arguments. Execute the function by

 calling it by means of the returned function handle, FUNHANDLE. For

 more information on anonymous functions, see "Types of Functions" in

 the MATLAB Programming documentation.

 To call the function referred to by a function handle value, use ordinary

 parenthesis notation. That is, specify the function handle variable

 followed by a comma-separated list of input arguments enclosed in

 parentheses. For example, HANDLE(ARG1, ARG2, ...). To call a

 function_handle with no arguments, use empty parenthesis, e.g.,

 HANDLE().

How to specify a function?

 Function handles enable you to:

 Pass a function reference to another function.

 Reduce the number of files that define your functions.

 Improve performance in repeated operations.

 Ensure reliability when evaluating functions.

With one exception, function handles can be manipulated and operated on in

 the same manner as other MATLAB values, including assignment to variables

 and inclusion in cells and structs. The exception is that you cannot

 construct a function_handle array. The reason is that the parenthesis

 notation for values of this class is used to call a function, not to

 index an array. To achieve the effect of an array of function handles,

 use cells, e.g., write "A = {@sin, @cos}" rather than "A = [@sin, @cos]".

 Of course, you need to index A with braces: "A{i}".

matlab file trapz.m

another Exercise
• Write an .m function to evaluate the sum of discrete

values of an arbitrary function at n equally spaced
points in an interval a≤x≤b.

1
()

(1)

1

n

i
i

i

s f x

x a i h
b a

h
n

=

=

= + −

−
=

−

∑

Relational and Logical Operators

What are the MATLAB results for the following
commands
• 5|4
• ~3
• y=5+2&~pi<eps
• Given x=[0 5 3 7] and y=[0 2 8 7]
 s=(x>y)&(x>4)
 t=~(x|y)

logical negation and arithmetic
y=5+2&~pi<eps

•If + has higher precedence than ~, ~pi+5
would give 0, because it is equivalent to
~(pi+5). But MATLAB gives 5. This indicates
that ~ has higher precedence than +.
•In line with this, running ~0+5 in MATLAB
gives 6.

Operator Precedence
• You can build expressions that use any combination of arithmetic, relational, and

logical operators. Precedence levels determine the order in which MATLAB evaluates
an expression. Within each precedence level, operators have equal precedence and
are evaluated from left to right. The precedence rules for MATLAB operators are shown
in this list, ordered from highest precedence level to lowest precedence level:

• Parentheses ()
• Transpose (.'), power (.^), complex conjugate transpose ('), matrix power (^)
• Unary plus (+), unary minus (-), logical negation (~)
• Multiplication (.*), right division (./), left division (.\), matrix multiplication (*), matrix right

division (/), matrix left division (\)
• Addition (+), subtraction (-)
• Colon operator (:)
• Less than (<), less than or equal to (<=), greater than (>), greater than or equal to (>=),

equal to (==), not equal to (~=)
• Element-wise AND (&)
• Element-wise OR (|)
• Short-circuit AND (&&)
• Short-circuit OR (||)

