Programming and debugging




Class exercise

Write a function .m file that transfer the a point in the
Cartesian coordinate system to the polar coordinate system.

WLV

A
- 4

« Run the command “polarcoordinates(3,4)".
« Run the command “theta=polarcoordinates(3,4)".
« How to have the both outputs of r and theta?



The polar coordinates rand ¢ can be converted to the Cartesian coordinates x and y by using the
trigonometric functions sine and cosine:

x
Y

T COS

7 sin

The Cartesian coordinates x and y can be converted to polar coordinates r
and ¢ with r=0 and ¢ in the interval (-n, ©] by:

r:\/:l:2+y2

@ = atan2(y, x)

Y

O UIS 4

\

7 COS X



https://en.wikipedia.org/wiki/Cartesian_coordinate_system
https://en.wikipedia.org/wiki/Trigonometric_function

I/ function [x,y] = xycoord(r,phi)

E]% returns polar coordinates r and phi [length and angle] wit
euclldlan coordinates X,y
= r .x cos(phi);
= r .x sin(phi);

= function [x,y] = xycoord(r,phi)

E]% returns polar coordinates r and phi [length and angle] wit
euclldlan coordinates X,y
= r .x cos(phi);
= r .x sin(phi);

>> help polarcoord
returns polar coordinates r and phi [length and angle] with inputs of

euclidian coordinates X,y

>> help xycoord
returns euclidian coordinates x and y with inputs of

polar coordinates r, phi



https://en.wikipedia.org/wiki/Projectile_motion



O 0O NO U B WN B

i T i g
0O ~NOULDE WNRERS

clc,clf,clear

0=9.81; theta®=45%xpi/180; v0O=5;

t(1)=0;x=0;y=0;

plot(x,y,'o', 'MarkerFaceColor','b"', '"MarkerSize"',8)
axis([0 3 0 0.8])

M(1)=getframe;

dt=1/128;

I for j = 2:1000

t(j)=t(j-1)+dt;

x=v0@*cos (thetad)xt(j);
y=vOx*sin(thetad)xt(j)-0.5%gxt(j)"2;

plot(x,y,'o"', '"MarkerFaceColor','b', '"MarkerSize',8)
axis([0 3 0 0.8])

M(j)=getframe;

if y<=0, break, end

-end

pause
movie(M, 1)



Debugging

Use “pause” to stop execution at various points

— After critical places where your script generates
numerical outputs

— After each graph is produced

— After important comments

Each time MATLAB reaches a “pause”

command, it wait until the user press a key

before proceeding.

Insert the command “keyboard” into an M-file, for
instance right before the line where an error may
occur, so that you can examine the Workspace of
the M-file at that point in its execution.

]I pe “return” or “"dbcont” to execution of the M-
ile.



Breakpoints

Insert breakpoints in the M-file where errors may occur

Once a breakpoint is inserted in the M-file, you will see a
little red dot next to the appropriate line in the Editor/
Debugger.

When the M-file is executed at the breakpoint (before the
line is executed), the execution will stop and control will
return to the Command Window.

Type “dbcont” to continue execution
Type “dbquit” to exit debugging AND stop execution.
An article for more debugging commands

http://blogs.mathworks.com/loren/2007/12/07/
useful-debugging-commands-and-tips/



Debug Using Cell Features

As you develop a MATLAB file, you can use the
Editor cell features to evaluate the file cell-by-cell.

This method helps you to experiment with, debug,
and fine-tune your code. You can navigate from
cell to cell, and evaluate each cell individually.

A video of operating with cells

https://blogs.mathworks.com/videos/2011/07/26/
starting-in-matlab-cell-mode-scripts/

A help document of working with cells

https://www.mathworks.com/help/matlab/
matlab_prog/run-sections-of-programs.html



The Find Function

The build-in find function is useful for many
logical and array indexing applications.

The function takes a logical matrix expression
and return a set of one-dimensional array indices

for the elements in the input argument that satisfy
the condition.

Try the following commands and explain what
you observe:

>>A=rand(3,3)
>>A>0.5
>>find(A>0.5)




