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clc

format long e
2= 640.2 a= 2.800000000000000e+00

b= 3.000000000000000e+00

b=a+0.2

c=b+0. 2 c= 3.200000000000001e+00

d=c-3.2 d= 4.440892098500626e-16

if d~=0 e= 2.251799813685248e+15
e=1/d

end

a=2.6+0.6 a= 3.200000000000000e+00

b=a+0.6 b= 3.800000000000000e+00

c=b+0.6 c= 4.400000000000001e+00

e=c+0.6 d= 5

e=d-5 e= 0



Numerical “Bugs”

* Obvious: Software has bugs.

— A software bug causes deterministic errors in
program execution. Given the same initial data, a
specific sequence of actions results in the same
erroneous outcome.

— Software bugs may appear to be random in some
situations, because the symptoms of the error may
depend on the state of the computer, especially the
data in memory, when the error occurs.

 Not-So-Obvious: Unavoidable numerical error
— Roundoff error
— Truncation error



Some Disasters

Some disasters attributable to bad numerical computing

(Douglas Arnold)

The Patriot Missile failure, in Dharan, Saudi Arabia, on
February 25, 1991 which resulted in 28 deaths, is
ultimately attributable to poor handling of rounding errors.

The explosion of the Ariane 5 rocket just after lift-off on its
maiden voyage off French Guiana, on June 4, 1996, was
ultimately the consequence of a simple overflow.

The sinking of the Sleipner A offshore platform in
Gandsfjorden near Stavanger, Norway, on August 23,
1991, resulted in a loss of nearly one billion dollars. It was
found to be the result of inaccurate finite element
analysis.




The Pentium™ FDIV Bug

tium Chips

In some complex
division problems,
annoying errors.

corrected,

Some computer users said lhey
believed that Intel had not acted
quickly enough after discovering the
error.

““Intel has known about this since
the summer; why didn't they tell
anyone?" snld Andrew Schulman,
the author of a series of technical
books on PC's. *'It's a hot issue, and |
don't think they've handled this well.

The company said that after |t
discovered the problem this sum-
mer, it ran months of simulations of
different applications, with the help
of outside experts, to determine
whether the problem was serious.

The Pentium error occurs in a
porton of the chip known as the
foating point unit, which is used for
extremely precise computations. In
rare cases, the error shows up in the
result of a division operation.

Intel said the error occurred be-
cause of an omission in the transla-
tion nf a farmnla intn foomnintar
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Intel Timeline

June 1994 Intel engineers discover the division error. Managers decide the
error will not impact many people. Keep the issue internal.

June 1994 Dr Nicely at Lynchburg College notices computation problems

Oct 19, 1994 After months of testing, Nicely confirms that other errors are not
the cause. The problem is in the Intel Processor.

Oct 24, 1994 Nicely contacts Intel. Intel duplicates error.
Oct 30, 1994 After no action from Intel, Nicely sends an email



FROM: Dr. Thomas R. Nicely
Professor of Mathematics
Lynchburg College
1501 Lakeside Drive
Lynchburg, Virginia 24501-3199

Phone: 804-522-8374
Fax: 804-522-8499
Internet: nicely@acavax.lynchburg.edu

1032 Whom it may concern
RE: Bug in the Pentium FPU
DATE: 30 October 1994

It appears that there is a bug in the floating point unit
(numeric coprocessor) of many, and perhaps all, Pentium
processors.

In short, the Pentium FPU is returning erroneous values
for certain division operations. For example,
0001/824633702441.0
is calculated incorrectly (all digits beyond the eighth
significant digit are in error). This can be verified in
compiled code, an ordinary spreadsheet such as Quattro Pr
or Excel, or even the Windows calculator (use the
scientific mode), by computing
00(824633702441.0)%(1/824633702441.0),
which should equal 1 exactly (within some extremely small
rounding error; in general, coprocessor results should
contain 19 significant decimal digits). However, the
Pentiums tested return
0000.999999996274709702




Nov 1, 1994 Software company Phar Lap Software receives Nicely’s email.
Sends to collegues at Microsoft, Borland, Watcom, etc. decide
the error will not impact many people. Keep the issue internal.

Nov 2, 1994 Email with description goes global.

Nov 15, 1994 USC reverse-engineers the chip to expose the problem. Intell
still denies a problem. Stock falls.

Nov 22, 1994 CNN Moneyline interviews Intel. Says the problem is minor.
Nov 23, 1994 The MathWorks develops a fix.

Nov 24, 1994 New York Times story. Intel still sending out flawed chips. Will
replace chips only if it caused a problem in an important
application.

994 IBM halts shipment of Pentium based PCs
994 Intel stock falls again.

994 More reports in the NYT: lawsuits, etc.
994 Intel admits. Sets aside $420 million to fix.

Dec 12,
Dec 16,
Dec 19,
Dec 20,

| S USSR w—



Numerical Errors

Roundoff occurs in a computer calculation
whenever digits to the right of decimal point are
discarded.

The digits in a decimal point (0.3333...) are lost
(0.3333) because there is a limit on the memory
available for storing one numerical value.

Truncation error occurs whenever a numerical
computation uses formulas involving discrete
values as an approximate a continuous function.



Uncertainty: well or ill-conditioned?

Errors in input data can cause uncertain results.

* Input data can be from experimental measurements that
subject to measurement error.

 Input data can be rounded when they are first stored in
computer memory (log transformed). These lead to a
certain variation in the results.

 well-conditioned: numerical results are insensitive to
small variations in the input

* Ill-conditioned: small variations lead to drastically
different numerical calculations (a.k.a. poorly
conditioned)



Exercise: Store a Integer

What are bit, byte, and word?

What is the decimal value for the binary number 11017
Check your result using the built-in function bin2dec.

Express the decimal value 25 as a binary number.
Check your result using the built-in function dec2bin.

What is the absolute upper limit on the largest unsigned
iInteger than can be stored as a 16-bit binary number?

What is the range for signed integer for a 16-bit
computer?



Bits, Bytes, and Words

base 10 conversion base 2
1 1 =2Y 0000 0001
2 2 =21 0000 0010
4 4 = 22 0000 0100
3 8 = 27 0000 1000
9 8+ 1=2%42Y 0000 1001
10 8+ 2 =234 21 0000 1010
_ 94 | 93 1 0
27 16+8+2+1=2%"+2°4+2"+2 .O(())Sibly(zil,

NMM: Unavoidable Errors in Computing page 5



Digital Storage of Integers (1)

As a prelude to discussing the binary storage of floating point values, first
consider the binary storage of integers.

e Integers can be exactly represented by base 2 Foctke 7 e (s

likely to see 32 bit or
e Typical size is 16 bitgll] 64 bit

o 216 — 65536 is largest 16 bit integdll
o [—32768,32767] is range of 16 bit integers in twos complement notation

e 32 bit and larger integers are available

NMM: Unavoidable Errors in Computing page 6



Digital Storage of Floating Point Numbers (1)

Numeric values with non-zero fractional parts are stored as floating point
numbers.

All floating point values are represented with a normalized scientific
notation®.

Example:

12.2792 = 0.123792 X 102\

Mantissa Exponent

'The IEEE Standard on Floating Point arithmetic defines a normalized binary format. Here we use a
simplified decimal (base ten) format that, while abusing the standard notation, expresses the essential ideas
behind the decimal to binary conversion.

NMM: Unavoidable Errors in Computing page 10



Digital Storage of Floating Point Numbers (2)

Floating point values have a|fixed|number of bits allocated for storage of
the mantissa and 4 fixed number of bits allocated for storage of the

exponent.

Two common precisions are provided in numeric computing languages

Bits for  Bits for
Precision mantissa exponent

Single 23 3
Double 53 11

NMM: Unavoidable Errors in Computing page 11



Single precision, which uses 32 bits and has the following layout:

e 1 bit for the sign of the number. 0 means positive and 1 means negative.
e 8 bits for the exponent.
e 23 bits for the mantissa.

Single Precision Floating Point

1 107707170 17000T07T7100TTT070TT07T11

Sign  Exponent Mantissa

6.384063 x 10"

Double precision, which uses 64 bits and has the following layout.

e 1 bit for the sign of the number. 0 means positive and 1 means negative.
e 11 bits for the exponent.
e 52 bits for the mantissa.



Special numbers

Zero

Negative Zero
Infinity

Negative Infinity

Not a Number (NaN)

0 00000000 00000000000000000000000
1 00000000 00000000000000000000000
011111111 00000000000000000000000
111111111 00000000000000000000000

011111111 00001000000000100001000




Floating Point Number Line
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Overflow

The built-in MATLAB variable realmax
corresponds to the overflow limits, the floating-
point number having a binary representation
with all of its usable bits turned on.

Numbers with magnitudes greater than roughly
10*308 do not exist on the number line of 64-bit
floating-point values.

Any MATLAB calculation resulting in a
magnitude greater than ~10*398 causes an
overflow error.

A number greater than realmax is assigned the
special value inf. Try 10*realmax.



Underflow

 Any MATLAB calculation that results in a magnitude
smaller than, ~10-398 and not exactly equal to zero,
cannot be represented by a 64-bit number. There are
no double-precision numbers between zero and
roughly £10-308,

* This hole in the number line is the range where
underflow errors occur.

* The built-in MATLAB variable realmin corresponds to
the underflow limits, the smallest floating-point
number than can be stored without a loss of
prevision.



Denormal

* |tis possible to store a floating-point number smaller
than realmin if bits that are normally associated with the
mantissa are used by the exponent. Try realmin/10.

« Such a number is called a denormal, because it is not
stored in the normalized format used for other values on
the floating-point number line.

* \When a calculation results in a value smaller than
realmin, there are two types of outcomes:

— If the results is slightly less than realmin, the number is stored as
a denormal, but you lose the precision (why?).

— When the result is significantly smaller than realmin and cannot
be sotred as a denormal, it is stored as exactly zero.



Floating Point Representation

Michael L. Overton
copyright (©)1996

1 Computer Representation of Numbers

Computers which work with real arithmetic use a system called floating point.
Suppose a real number z has the binary expansion

r=4mx2¥  where 1l <m <2

and

nm = (bo.blbgbg . o .)2.



To store a number in floating point representation, a computer word is divided
into 3 fields, representing the sign, the exponent F, and the significand m
respectively. A 32-bit word could be divided into fields as follows: 1 bit
for the sign, 8 bits for the exponent and 23 bits for the significand. Since
the exponent field is 8 bits, it can be used to represent exponents between
—128 and 127. The significand field can store the first 23 bits of the binary
representation of m, namely

bo.bl P 622.

If bys3, 094, ... are not all zero, this floating point representation of x is not
exact but approximate. A number is called a floating point numberif it can be
stored exactly on the computer using the given floating point representation
scheme, i.e. in this case, ba3, boy, ... are all zero. For example, the number

11/2 = (1.011)4 x 2°

would be represented by

0 =72 1.0110000000000000000000

~

+{1%2° + Ox2-1 + 1x2-2 + 1%2-3) *x 22=(1+1/4+1/%) * 4 = 6.8



and the number +{1%2° + O%2-1 + O%22 + Ox2-3 +

71 = (1.000111)5 x 20 1%2-4 + 1%2-5 + 1;.;2-—6) % 26=
would be represented by + (1+1/16 + 1/32 + 1/&4) * 64 =
71

0 E =6 1.0001110000000000000000 |

To avoid confusion, the exponent FE, which is actually stored in a binary
representation, is shown in decimal for the moment.
The floating point representation of a nonzero number is unique as long

as we require that 1 < m < 2. If it were not for this requirement, the number
11/2 could also be written

(0.01011)5 x 2%

and could therefore be represented by

0 E =4 10.0101100000000000000000 |

However, this is not allowed since bg = 0 and so m < 1.

+{O%20 + O%2-1 + 1%2-2 + O%2-3 + 1%2-4 + 1%2-5) *x R4=
=(0+1/4+1/16 + 1/32) * 1& = §.8



A more interesting
example is

1/10 = (0.0001100110011 .. .),.

Since this binary expansion is infinite, we must truncate the expansion some-
where. (An alternative, namely rounding, is discussed later.) The simplest
way to truncate the expansion to 23 bits would give the representation

0 =0 0.0001100110011001100110

—

but this means m < 1 since bg = 0. An even worse choice of representation
would be the following: since

1/10 = (0.00000001100110011...)5 x 2%,

the number could be represented by

0 =4 0.0000000110011001100110 |




How to generate the binary representation

For example: 329.390625

256 +64 +8 + 1

3929 ﬁ 28 4 26 4 23 4 20

0.390625* 2= 0.78125
0.390625 0.78125 *2=1.5625

0.5625 *2=1.125

0.125 *2=0.25

0.25 *2=0.5

0.5 *2=1

101001001 §011001
329.390625 == | [IIETIETRETT * 08




A more interesting
example is

1/10 = (0.0001100110011 .. .),.

Since this binary expansion is infinite, we must truncate the expansion some-
where. (An alternative, namely rounding, is discussed later.) The simplest
way to truncate the expansion to 23 bits would give the representation

0 =0 0.0001100110011001100110

—

but this means m < 1 since bg = 0. An even worse choice of representation
would be the following: since

1/10 = (0.00000001100110011...)5 x 2%,

the number could be represented by

0 =4 0.0000000110011001100110 |




0.1*2=0.2
0.2*2=0.4
04*2=0.8
0.8*2=1.6
06*2=1.2
0.2*2=0.4
04*2=0.8
08*2=1.6
06*2=1.2
0.2*2=0.4
04*2=0.8

OO0 - =-200---=2000



This is clearly a bad choice since less of the binary expansion of 1/10 is
stored, due to the space wasted by the leading zeros in the significand field.
This 1s the reason why m < 1, i.e. bg = 0, 1s not allowed. The only allowable
representation for 1/10 uses the fact that

1/10 = (1.100110011...)5 x 27,

giving the representation

0 B =-4 1.1001100110011001100110 |.

This representation includes more of the binary expansion of 1/10 than the
others, and is said to be normalized, since by = 1, i.e. m > 1. Thus none of
the available bits is wasted by storing leading zeros.

We can see from this example why the name floating point is used: the
binary point of the number 1/10 can be floated to any position in the bitstring
we like by choosing the appropriate exponent: the normalized representation,
with bg = 1, is the one which should be always be used when possible. It is
clear that an irrational number such as 7 is also represented most accurately
by a normalized representation: significand bits should not be wasted by
storing leading zeros.



In a normal floating-point value, there are no leading zeros in the significand; instead leading zeros
are moved to the exponent. So 0.0123 would be written as 1.23 x 10-2. Denormal numbers are
numbers where this representation would result in an exponent that is below the minimum
exponent (the exponent usually having a limited range). Such numbers are represented using
leading zeros in the significand.

The significand (or mantissa) of an IEEE floating point number is the part of a floating-point
number that represents the significant digits. For a positive normalized number it can be
represented as mo.mimoms...mMp-2Mp-1 (Where m represents a significant digit and p is the
precision, and mo is non-zero). Notice that for a binary radix, the leading binary digit is always 1. In
a denormal number, since the exponent is the least that it can be, zero is the leading significand
digit (0.mimoms...mp-2mp-1), allowing the representation of numbers closer to zero than the
smallest normal number. A floating point number may be recognized as denormal whenever its
exponent is the least value possible.

By filling the underflow gap like this, significant digits are lost, but not as abruptly as when using
the flush to zero on underflow approach (discarding all significant digits when underflow is
reached). Hence the production of a denormal number is sometimes called gradual underflow
because it allows a calculation to lose precision slowly when the result is small.


https://en.wikipedia.org/wiki/Significand
https://en.wikipedia.org/wiki/Significand
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/Radix

Rounding error

https://en.wikipedia.org/wiki/Rounding

Roundoff error occurs because of the computing device's inability to deal with certain numbers.
Such numbers need to be rounded off to some near approximation which is dependent on the
word size used to represent numbers of the device.

Truncation error

Truncation error refers to an error in a method, which occurs because some series (finite or
infinite) is truncated to a fewer number of terms. Such errors are essentially algorithmic errors
and we can predict the extent of the error that will occur in the method.



Truncation Errors

Truncation errors are the errors that result from

using an approximation in place of an exact

mathematical procedure.

Approximation

Truncation Errors
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Exact mathematical formulation




Relative error versus absolute error

Absolute Error is the magnitude of the difference between the true value x and

the approximate value xa, Therefore absolute error=[x-xa] The error between
two values is defined as

€abs = ||z — zal

where x denotes the exact value and xadenotes the approximation.

The relative error of I is the absolute error relative to the exact value. Look at it
this way: if your measurement has an error of + 1 inch, this seems to be a huge
error when you try to measure something which is 3 in. long. However, when
measuring distances on the order of miles, this error is mostly negligible. The

definition of the relative error is




MathWorks Resources

Academic resources
http://www.mathworks.com/academia/
Classroom resources -> Numerical and Symbolic Math

https://www.mathworks.com/academia/courseware.html?s tid=acb cw

Cleve Moler’s textbooks
http://www.mathworks.com/moler/exm/chapters.html
http://www.mathworks.com/moler/index_ncm.html
MATLAB Central
http://www.mathworks.com/matlabcentral/

MATLAB Plot Gallery
http://www.mathworks.com/discovery/gallery.ntml
MATLAB symbolic computing: MuPAD
http://www.mathworks.com/discovery/mupad.html




