Part 3
Truncation Errors



Key Concepts

* Truncation errors

* Taylor's Series
— To approximate functions
— To estimate truncation errors

* Estimating truncation errors using other
methods

— Alternating Series, Geometry series,
Integration



Introduction

How do we calculate
sin(x), cos(x), e*, x”, Jx, log(x), ...

on a computer using only +, -, x, +7

One possible way is via summation of infinite
series. e.qg.,

2 3 1
X X x" x"

e =l+x+—+—+... + + +...
2! 3 n'  (n+1)!




Introduction

2 1
X x3 xn xn+

e =l+x+—+—+... + + + ...
21 3 n' (n+1)!

* How to derive the series for a given function?

* How many terms should we add?
or

* How good is our approximation if we only sum
up the first N terms?



A general form of approximation is in
terms of Taylor Series.
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Taylor's Theorem

Taylor's Theorem: If the function fand its first n+1
derivatives are continuous on an interval containing «
and x, then the value of the function at x is given by

/ "(a) /' (a)
3!

(x-a)’ +..

f(x)= fla)+ f'(a)(x-a)+

+ () (x-a)"+R
n!

(x-a) +

where the remainder R is defined as

g (X B t)n n+
R, = r £ (@t (the integral form)
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Derivative or Lagrange Form of the remainder

The remainder R  can also be expressed as

R = ]; (n+1>1(;) (x-a)™ (the Lagrange form)
n+l)!

for some ¢ between ¢ and x

The Lagrange form of the remainder makes
analysis of truncation errors easier.




Taylor Series

/" (a) L) (3)(61)

(x-a) +

f(x)= fla)+ fi(a)(x-a)+ (x-a)" +

+ (@) (x-a)"+R
n!

* Taylor series provides a mean to approximate any
smooth function as a polynomial.

* Taylor series provides a mean to predict a function
value at one point x in terms of the function and its
derivatives at another point a.

* We call the series "Taylor series of fat " or "Taylor

series of fabout a".
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Example — Taylor Series of e at 0

f(X)=e"=> f'(x)=e"=> f"(x)=¢e" => f(x)=¢" forany k =0
Thus £ (0)=1forany k = 0.
With a =0, the Taylor series of f at 0 becomes

F(O0)+ f'(0)(x-0)+ f"2('0) (x=0)" +...+ f(”)'(O) (x=0)" +...
: n.

2 3
xX- X x"

=l+x+—+—+...+
21 3! n!

+ ...

Note:

Taylor series of a function fat O is also known as the
Maclaurin series of 1.



Exercise — Taylor Series of cos(x) at O

J(x)=cos(x)=> f(0)=1 J'(x)=-sm(x)=> f'(0)=0
M(x)=-cos(x)=> f"(0)=-1 f(x)=sin(x)=> fP0)=0
fP(x)=cos(x)=> fP0)=1 f®x)=-sin(x)=> f*0)=0

With a =0, the Taylor series of f at 0 becomes

£(0)+ '(0)(x -0) + f"z('O) (x —0)" +... + /(0) (x —0)" +..

n!

10



Question

2 3 1
N xX° X x” x"

e =l+x+—+—+...+ + + ...
21 3l n'| (n+1)!

What will happen if we sum up only the first n+1
terms?



Truncation Errors

Truncation errors are the errors that result from

using an approximation in place of an exact
mathematical procedure.

Approximation

Truncation Errors

/
2 3 n n+l
. X X X X
e =l+x+—+—+... .+ + + ...
2! 3! n'| [(n+1)!

Exact mathematical formulation
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How good is our approximation?

2 3 1
X X x" x"'

e =1l+x+—+—+ ...+ + +
21 3l n!' |(n+1)!

How big is the truncation error if we only sum up
the first n+1 terms?

To answer the question, we can analyze the
remainder term of the Taylor series expansion.

" (3)
f(x)- f<a>+f'<a><x—a>+f D (x-ay +7 (“) (x-a) +
f”(a)

(x-a)" +R

n
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Analyzing the remainder term of the
Taylor series expansion of f(x)=e* at 0

The remainder R in the Lagrange form is

P = f(ml)(c) (x - a)n+1

" (n+))!

for some ¢ between ¢ and x

For f(x) = e and a =0, we have f**D(x) = e¢*. Thus

C

R_e

" (n+))!

€

IA

X

(n+1)!x

n+1

x"" for some cin [0, x]

We can estimate the largest possible
truncation error through analyzing R .
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Example

Estimate the truncation error if we calculate e as

1 1 1 1
e=l+—+—+—+..+—
120 3 7!
This is the Maclaurin series of f{x)=e¢* with x =1 and
n =". Thus the bound of the truncation error is

X

1
€ 7+1 e_ 8
=g |Tlg

“120.6742x10™*

3!

The actual truncation error is about 0.2786 x 10-4.
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Observation

For the same problem, with » = 8, the bound of the truncation

error Is

e
RSS

—1=0.7491x10°
9!

With » = 10, the bound of the truncation error is

e

—=0.6810x107’
11!

R, <

More terms used implies better approximation.
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Example (Backward Analysis)

This is the Maclaurin series expansion for e

2
Xt x x"

e =1l+x+—+—+.. +—+..
21 3 n!

If we want to approximate ¢°°' with an error
less than 10-'2, at least how many terms are
needed?
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With x=001, 0<c<0.0, f(x)=e"=> f"(x)=¢"

eC n+l 60.01 n+l 11
R = " < (0.01)"" <
(n+1)! (n+1)! (n+1)!

Note:1.1'% s about 13781 > e

(0.01)""!

To find the smallest » such that R, <102, we can find
the smallest n that satisfies

1.1 (O Ol)n+1 10" -12 With the help of a computer:
(n + 1)[ n=0 Rn=1.100000e-02
n=1 Rn=5.500000e-05
n=2 Rn=1.833333e-07

n=3 Rn=4.583333e-10
So we need at least 5 terms——4 rn-9.166667¢-13
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With x

R

n

With the help of a computer:
.500000e-01
Rn=2 .
Rn=3.
.427083e-03
.4277083e-04

n=0
n=1
n=2
n=3

n=4

Same problem with larger step size

0<c<05 f(x)=e"=>f""(x)=¢

C

€ an+1

(n+1)!

Rn=8

Rn=4
Rn=4

125000e-01
541667e-02

0.5
€

(n+1)!

n=5 Rn=3.
n=6 Rn=2.
n=7 Rn=1l.
n=8 Rn=9.
.574946e-10
n=10 Rn=2.079521e-11

n=9 Rn=4

(O 5)n+1

1.7

(n+1)!

Note:1.721s 2.89 > e

689236e-05
635169e-06
646980e-07
149891e-09

<_n=11 Rn=8.664670e-13 >

So we need at least 12 terms

o

(O.S)n+1
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To approximate e!*° with an error less than 10-'2,
we will need at least 55 terms. (Not very efficient)

How can we speed up the calculation?
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Exercise

If we want to approximate ¢'%> with an error less
than 102 using the Taylor series for f{x)=e* at 10,
at least how many terms are needed?

The Taylor series expansion of f(x)at101s
f(x)=f(10)+ J (10) (x—-10) + f";lO) (x-10)" +...+ /(10) (x-10)"+ R
n!

(x~10) + ...+ (x—10)" )+ R
2! n!

=e’(1+(x-10) +

PR AR (x —10)

, "1 for some ¢ between 10 and x
(n+1)!

The smallest n that satisfy R <102 is n=18. SO0 we need

at least 19 terms.
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Observation

* A Taylor series converges rapidly near the
point of expansion and slowly (or not at
all) at more remote points.
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Taylor Series Approximation Example:
More terms used implies better approximation

fix) 4

fix;)
Zero order flx, , 1) = flx)
1.0 — S ) = flx) + fxh
Uh — flx; . 1) = fx) +f(x)h + fgff} h=
f{'rf - '|]I
0 | ' .
x;=0 Xip1=1 2

fx)=0.1x*-0.15x°- 0.5x°- 0.25x + 1.2
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Taylor Series Approximation Example:
Smaller step size implies smaller error

el Errors
fix;)
f{'rr' - 1} = f{l‘f}
1.0 — N flx . ) = flx)) + f(x)h
Reduced step size
0.5 Flr . 1) = fx) + ) h + / g'f"’ h?
f{'rf - '|]I
0 | ' .
x;=0 Xip1=1 2

fx)=0.1x*-0.15x°- 0.5x°- 0.25x + 1.2
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Taylor Series (Another Form)

If we let 4 = x — a, we can rewrite the Taylor series
and the remainder as

" (n)
/ (a)h2+...+f (a)h”+Rn
2! n!

J(x)=fla)+ f(a)h+

1
R = f(n+ )(C) ] When £ is small, 47! is much
" (n+))! smaller.

h is called the step size.

h can be +ve or —ve.
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The Remainder of the Taylor Series Expansion

(n+1)
Rn _ f (C) hn+1 _ O(hn+1)
(n+1)!

Summary

To reduce truncation errors, we can reduce /4 or/and
Increase n.

If we reduce 4, the error will get smaller quicker (with less n).

This relationship has no implication on the magnitude of the
errors because the constant term can be huge! It only give
us an estimation on how much the truncation error would
reduce when we reduce 4 or increase n.

26



Other methods for estimating
truncation errors of a series

S=t,+t,+t,+t;+...+t +1t +1 ,+E +..

' '

Si’l Ri’l

1. By Geometry Series

2. By Integration

3. Alternating Convergent Series Theorem
Note: Some Taylor series expansions may exhibit certain

characteristics which would allow us to use different methods
to approximate the truncation errors.

27



Estimation of Truncation Errors

By Geometry Series
If |2.,,| < k|t| where 0 <k <1 for all j 2 n, then

‘Rn =tn+l +tn+2 +tn+3 T ...
n+l +k‘tn+l‘ +k2‘tn+l‘ +..
‘ t, (1 +k +k° +k° +.. )
‘ n+1‘
—k
ktn
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Example (Estimation of Truncation Errors by Geometry Series)

What is |R,| for the following series expansion?
S =142 +/2787 +/378° +... ./ joo? +...

, =\/;.777_2j

lution: r.. : 22
Solutio ‘]1‘_\/]+.1Z,- —Jl+l..77:_2
Istherea k (0<k<1)s.t. ‘tj‘ Vi J
Gl <Kl orfp el <k e,

+1‘ s\/l +é.7t_2 N =6

i

for all j <n (n=6)? ‘t

<O0.11

If you can find this £, then
k=0.11, |[t,| <3><107°

klz, __0.11
1—& 1—0.11

R

=<3 ><107°

1-k ‘R6‘S
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Estimation of Truncation Errors
By Integration

If we can find a function f(x) s.t. |t| <Aj) Vj >n

and f(x) is a decreasing function Vx >, then

e o z‘t ‘< Ef(])

J=n-+l1 J=n-+l1
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Example (Estimation of Truncation Errors by Integration)

Estimate |R | for the following series expansion.

S =th where 7, =7 +D™
=

Solution:

We can pick f(x) = x> because it would provide a
tight bound for |¢]. That is

12 ! 7 =1

? 1+j3

So \Rn\sf%dx_ :

2
X 2n
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Alternating Convergent Series
Theorem (Leibnitz Theorem)

If an infinite series satisfies the conditions
— It is strictly alternating.

— Each term is smaller in magnitude than that
term before it.

— The terms approach to 0 as a limit.

Then the series has a finite sum (i.e., converge)

and moreover if we stop adding the terms after the
n" term, the error thus produced is between 0 and
the 1% non-zero neglected term not taken.
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Alternating Convergent Series Theorem

Example 1.

Maclaurin series of ln(l + X)

X2 3 00 , X
S=x- 1" ~1<x=l
5t 2( ) ( )
Withn = 35,
S =1—l+l—l+l = (0.7833333340
2 3405 Eerror
In2 =0.693 estimated
1 4+« using the
R|=|S - n2| a@ 6 ’@6666 althernating
A | convergent
ctual error series

theorem
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Alternating Convergent Series Theorem
Example 2:

Maclaurin series of cos(x)

D 0 2n+l
S=1-—F—-—+...= ~1)"
21 4 6! ,ZO( ) (2n +1)!
Withn =5,
2 4 6 8
S —1—1—+1——1—+1— = (.5403025793
20 41 6! & Eerror
cos(1) =0.5403023059 estimated
/ using the
07 7 althernating
S - cos(D)] {27310 10! \76 8 ID ) convergent
series

Actual error theorem
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Exercise

If the sine series is to be used to compute sin(1) with an
error less than 0.5x10-4, how many terms are needed?

13 15 17 19 111 113 115 117
sin(l) =1—-—+ + + +
35 79 111 13t 15 17!

R, R, R, R, R, R, R R

Solution:

This series satisfies the conditions of the Alternating
Convergent Series Theorem.

Solving p _ 1 1
T l(2rn+3)! 2

for the smallest » yield n =7 (We need 8 terms)
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Exercise .
7 =1 +L +L +L +..
90 24 3% 4¢
How many terms should be taken in order to compute
n*/90 with an error of at most 0.5x10-37?

R,|=t,, +1,,, +... i _ ! y <fo(x +1) *dx

S I t t t ]#1+1 (.] +1)
olution niegra |on
_ (x +1)@y>0| (g +1)7

—3 | 3

1 1

S| <= <107 = (n +1) =406 =—n =405
3(n +1) 2

Note: If we use f(x) = x? (which is easier to analyze) instead
of f(x) = (x+1)3 to bound the error, we will get n >= 406
(Just one more term). 26



Summary

* Understand what truncation errors are

* Taylor's Series
— Derive Taylor's series for a "smooth" function

— Understand the characteristics of Taylor's Series
approximation

— Estimate truncation errors using the remainder term

* Estimating truncation errors using other methods
— Alternating Series, Geometry series, Integration
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