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1 Evolutionary Trees

Tree is an important concept in Graph Theory, Computer Science, Evolutionary Biology, and many

other areas. In evolutionary biology, a tree is a branching diagram used to illustrate the divergence

over time of evolutionary lineages (species) or of genetically encoded traits (such as DNA or protein

sequences) of those lineages. The former trees are sometimes called species trees and the latter gene

trees, with the word gene loosely referring to any genetic component or genetically determined trait

of an organism. The word phylogeny is usually used as a synonym of species tree.

In organisms that reproduce asexually, gene trees and species trees are essentially the same thing

but organisms that reproduce sexually, including most multicellular organisms, mix genes with

different ancestry every time they reproduce. Therefore, sexually reproducing organisms diverge

more slowly than their genes, and this introduces several potential sources of mismatch between

gene and species trees, as we will see later during the course. Generally speaking, however, gene

trees and species trees tend to be largely congruent.

We will, during the course, cover both Population Genetics and Phylogenetics, in particular the

ways in which they use evolutionary trees. Population Genetics focuses on individual or closely

related evolutionary lineages and the genetic structure within them. This information, contained

in gene trees, is used to describe the present, infer the recent past, or predict the immediate

future of evolutionary lineages (populations). Phylogenetics is the study of species trees and their

implications concerning the evolution over longer time scales. There is an interesting divide between

Population Genetics and Phylogenetics, among other things evident in the fact that evolutionary

lineages are referred to as populations in the former field and species in the latter. The critical

difference appears to be in the life span of the lineages: the term species implies a longer life span
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than the term population. A lineage that lasted or is predicted to last some critical amount of

time (say 10,000 to 100,000 years or more) is typically referred to as a species, whereas a lineage

with shorter life span is called a population and not a species. There is also some anthropocentrism

involved, so we tend to call lineages closely related to us separate species (eg. Neanderthals) whereas

similar amounts of divergence would probably be understood as population-level differentiation in

invertebrates.

An evolutionary tree is typically drawn with the root at the bottom (Fig. 1) unlike other types

of trees, such as those used in Computer Science, which by convention are drawn with the root at

the top. The evolutionary tree (or any other tree for that matter) consists of two components: the

divergence points and the lines connecting them. Biologists typically refer to the divergence points

as nodes and the lines connecting them as branches or sometimes internodes (Fig. 1).
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Figure 1: An evolutionary tree

The nodes in an evolutionary tree fall into three types: terminal nodes, interior nodes, and the

root node (Fig. 1). The terminal nodes either represent current lineages or lineages that have gone

extinct (evolutionary dead ends). The interior nodes represent slightly different things depending

on whether the tree is a species tree or a gene tree. If it is a species tree, then an interior node

symbolizes a speciation event whereby one ancestral (mother) lineage diverges into two descendant

(daughter) lineages. The two daughter lineages are also referred to as sister lineages. Note that
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biologists tend to use feminine rather than masculine (father) or neutral (children, siblings) words

to describe these tree components. If the tree is a gene tree in a sexually reproducing organism,

then the interior nodes are genetic divergence events that ultimately go back to a DNA or RNA

replication event. Some of those events may correspond to but typically precede speciation events,

as will be explained later during the course.

The root node indicates where the tree is rooted, that is, the position of the most basal divergence

event in the tree. If the tree is a species tree, then the root is the place where it connects to the

rest of the Tree of Life, the species tree for all life on earth. The root of a species tree or gene tree

is also referred to as the most recent common ancestor of the species or sample in the tree. We will

later see that in population genetics this MRCA of the sampled individuals is also the MRCA of

the whole population. This term implies that the node represents the last snapshot of the ancestral

lineage just before the divergence event. We can similarly think of an interior node in a species tree

as symbolizing either a snapshot of the ancestral linage just before the speciation (an ancestor) or

the speciation event itself. The nodes in a gene tree are typically not described as ancestors but

sometimes as ancestral sequences (or traits).

The branches in an evolutionary tree have lengths measured in time units. This means that (in a

tree with the root at the bottom) we can place a time scale along the tree and the vertical position

of the divergence events will then indicate when they took place (Fig. 1). Similarly, the vertical

range of a branch in such a tree corresponds to the life span of the corresponding evolutionary

lineage. In a tree with slanted branches (Fig. 1), the actual length of a branch also depends on its

angle, which is typically chosen to give a graphically pleasing presentation, and therefore has no

direct interpretation. To avoid this problem, evolutionary trees are often drawn with rectangular

branches (Fig. 2). In such a tree, each branch is represented by two lines; the length of one reflects

the time duration of the corresponding lineage and the length of the other is chosen so that the

branch can be connected with its ancestral lineage.

It is important to understand that evolutionary trees are only models, even if they are usually

very good models (hence their use in virtually all disciplines in the life sciences). There are several

processes that violate the basic assumptions of the tree model, including recombination (common

in sexually reproducing organisms) and horizontal gene transfer (rare but occurring in most organ-

isms). For now, we will ignore these processes but we will return to them later during the course.

An important fact to remember is that most evolutionary lineages are short-lived and go extinct

before they become significant enough to be considered populations or species. There is usually

an implicit understanding that an evolutionary tree is what remains after a large number, perhaps

millions, of such insignificant side branches have been pruned away.

3



ISC5317-Fall 2007-PB Computational Evolutionary Biology

Root node

Interior node

Terminal node

Internode or Branch

T
im

e

Figure 2: An evolutionary tree with rectangular branches.

2 More About Trees

An evolutionary tree is a special case of the general concept of trees, and it is characterized by

several special properties. First, it is rooted, that is, it has a root. Another way of saying the

same thing is that the tree is directed, there is an explicit time direction in it (otherwise we would

not be able to identify ancestors and descendants). Second, the tree is a clock tree, meaning that

branch lengths are measured in time units. A clock tree is sometimes also called a linearized tree,

an ultrametric tree, or a (labeled) history.

In practice, it is seldom possible to directly infer an evolutionary tree of the type described above,

and we will often use the term evolutionary tree to refer to simpler models. In particular, it

is difficult to estimate the divergence times because of variation in evolutionary rates. For this

reason, we often have to be satisfied with trees where branch lengths are measured in terms of the

amount of evolutionary change instead of in terms of time. Such a tree is referred to as a non-clock

tree or an additive tree. If we consider a species tree for a set of extant (now living) species, where

all terminals are of the same age, then a clock tree has all terminals at the same level (Fig. 3a)

whereas a non-clock tree (potentially) has the terminals at different levels (Fig. 3b). In the non-
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clock tree, the terminals on short branches are more similar to the most recent common ancestor

of the group than the terminals that sit on long branches. Biologists sometimes refer to additive

trees as phylograms.

A

C

D

BA C D B

Figure 3: Comparison between a non-clock tree (right) and a clock tree (left).

As we will discover soon, many methods of inferring evolutionary trees cannot estimate divergence

times nor can they place the root in the tree. Such a method will result in an unrooted tree, also

called an undirected tree because of its lack of a time direction (Fig. 4a). An unrooted tree is

always non-clock. If you are interested in the position of the root, which is almost always the case,

you have to use a separate rooting method to find it. A common method is to include one or more

reference lineages, also called outgroups, in your analysis. After the analysis, the root is placed

between the outgroup and the lineage being studied (the ingroup) (Fig. 4b).
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Figure 4: An unrooted tree (a) can be rooted between an outgroup and the study group (the

ingroup) (b) to give a rooted tree (c).

Biologists are sometimes just interested in the branching structure or branching order of an evolu-
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tionary tree, and not in the branch lengths. The branching structure is referred to as the topology

of a tree and is represented in a cladogram. The same cladogram can be drawn in many different

ways (Fig. 5).

a b c d e a b c d e a b c d e

Figure 5: The same tree topology (cladogram) can be drawn in many different ways because, among

other things, the branch lengths are arbitrary.

Evolutionary biologists typically restrict their attention to trees that are binary or dichotomous,

meaning that there are only two descendants of each interior node. Sometimes, trees with three

or more descendants from a single node, called polytomous trees, are also considered. In many

situations, polytomous trees are adequately approximated by sets of binary trees with short interior

branches (Fig. 6).

Regardless of its type (clock, rooted non-clock or unrooted) it is always possible to draw the same

tree in different ways in a two-dimensional figure because of the rotational freedom around each

node. For instance, in a rooted tree we can shift the left and right descendants of each node without

changing the meaning of the tree (Fig. 7).

In Graph Theory and Computer Science, there is a different set of terms used for trees, and you

often see these used in computational evolutionary biology as well. They are vertex (for node),

edge (for branch), leaf (for terminal node), and root (for the root node). In this terminology, the

degree of a vertex is the number of branches connected to it. Thus, an interior node of a binary

tree has degree three, a leaf has degree one and the root has degree two. An edge weight is the

same as the length of a branch.

It is often practical to refer to subtrees within a larger tree. Biologists refer to them as clades. A

clade can defined as a node i and all of its descendants (or, alternatively, as the subtree rooted at

node i). Clades can also be called taxa (singular taxon) or operational taxonomix units (OTUs).

Taxa are used for named groups in a biological classification whereas OTUs are groups that lack
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Figure 6: A tree with a polytomy (a) can be thought of as being approximated by a set of of binary

trees with very short interior branches (b to d).

formal names. It is not uncommon to see evolutionary trees in which the terminals are taxa above

the species level (also called higher taxa). For instance, a cladogram may give the relationships

among a set of genera or families, each containing many species. Since individual evolutionary

lineages can also be called taxa or OTUs, it is generally true that the terminals in a species tree

are taxa or OTUs.

Closely related to the concept of a subtree is the concept of a split or taxon bipartition. Each branch

in a tree divides the terminal nodes (taxa) into two disjoint sets, one on each side of the branch.

We will be using splits when we describe methods for assessing the robustness in the inference of

evolutionary trees.

3 Computer Representation of Trees

Reference: Felsenstein Chapter 35, pp. 585-590.
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Figure 7: The same tree can be drawn in many different ways because of the rotational freedom

around each node.

Much of this course will be devoted to the description of algorithms operating on trees. For this

purpose, we will need a data model for trees. A simple model for rooted binary trees, found in

many computer science texts, is given below (Fig. 8; see also Felsenstein, Fig.35.1). We will be

referring to this model as the Binary Tree Data Model (BTM). The idea is to use a simple data

structure for each node, containing pointers to the two descendant nodes and the ancestral node.

The terminal nodes have their descendant node pointers set to NULL and the root node has its

ancestral node pointer set to NULL. Strictly speaking, the pointer to the ancestral node is not

needed but it is convenient to have it in many cases. Felsenstein also includes a boolean variable

indicating whether a node is terminal (a tip). Again, this can be figured out from the pointers, so

this variable is only there for convenience. If we need to store branch lengths, we can simply store

them in the node structure of the node above the branch. The branch length variable needs to be

added to the node structure in Felsenstein’s figure. In an object oriented computer language, we

would typically store the nodes inside a tree class, which would contain a pointer to the root of the

tree.

A complication arises when we want to represent unrooted trees using this structure, since they do

not have a root node nor a natural ancestor - descendant direction to them. One way of solving

the problem is to treat the tree as if it were rooted on an internal node, typically the interior

node adjacent to the outgroup terminal (Fig. 9). We can easily represent all of the nodes that are

descendants of the interior ‘root’ node using the BTM. The interior root node is then connected to

two of its subtrees using its left and right pointers, and the third subtree using its ancestor pointer.

All the branch lengths around the interior root node are now stored in other nodes, so the interior

root node does not have a branch length. By using this type of structure, we have forced a direction

onto the unrooted tree.
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Figure 8: The Binary Tree Data Model (BTM).

Clearly, truly polytomous trees cannot be represented using the BTM. A data structure similar to

the BTM that accommodates polytomous trees uses pointers from a node to its ancestor, leftmost

descendant, and to one of its siblings (Fig. 10). This structure can easily accommodate unrooted

trees by arbitrarily selecting one of the interior nodes as the ’root’ of the tree. We will refer to this

data structure as the Polytomous Tree Data Model (PTM).

A somewhat different structure has been pioneered by Felsenstein (Fig. 11; see also Felsenstein:

Fig. 35.2) and will be referred to as the Felsenstein Tree Data Model (FTM). It uses rings of

nodelets to represent nodes. Each nodelet has a ‘next’ pointer to the next node in the ring and an

‘out’ pointer to the nodelet on the other end of the branch to which it is connected. This structure

can accommodate both binary and polytomous trees as well as rooted and unrooted trees. An

advantage of this data structure is that it can be rerooted more easily than the previous two types.

Branch lengths can either be stored in separate data structures pointed to by both of the adjacent

nodelets, or they can be contained as member variables of both of the adjacent nodelets, and set

functions can then be used to make sure that the two member variables representing the same

branch are always in sync. It is convenient to have the nodelet structure or class contain a boolean

member indicating whether the nodelet points down in the tree, so that we know where to start

and stop when cycling through the nodelets representing a node of the tree.
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Figure 9: A modification of BTM to accommodate unrooted trees. The two trees have different

roots, the pointers change in all interior nodes.

4 Text and XML Representation of Trees

Reference: Felsenstein Chapter 35: pp. 590-591.

There is often a need to describe a tree in text format, for instance for storing trees resulting from

an analysis. This is typically done using the Newick format described in Felsenstein (Chapter 35,

pp. 590). A shortcoming of the Newick format is that it can only specify rooted trees. An unrooted

tree must be converted to one of its rooted representations before it can be expressed in Newick

format. If we arbitrarily root an unrooted tree on one of its branches, however, there is one branch

length that will have to be arbitrarily divided into two components, one on each side of the root

(Fig. 9a). A better method is to root the tree on an interior node and write it as if it had a basal

trichotomy (since the interior ‘root’ node will have three ‘descendants’ unlike all other nodes, which

have only two). If there is a single outgroup terminal, the tree is typically rooted on the interior

node adjacent to that terminal. Assume we have an unrooted binary tree with terminals labeled A

to D and the branch lengths labeled v1 to v5 and that we root it on the interior node adjacent to the

tip D (alternatively, we can describe this as rooting the tree on D) (Fig. 9b). The Newick-format

description would now be ((A:v1,B:v2):v3,C:v4,D:v5), as if the tree had a basal trichotomy involving

C, D, and the ancestor of A and B. Note how this solution gives us a natural place to put all branch

lengths. The basal trichotomy solution only works if we restrict our attention to binary trees, since
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Figure 10: The polytomous tree data model (PTM).

there is no way we can distinguish a truly rooted tree with a basal trichotomy from an unrooted

tree written as if it were a rooted tree with a basal trichotomy.

A Newick-format tree is often contained in a tree block of a NEXUS file. The general structure of

a NEXUS file containing a tree block is:

#NEXUS

begin trees;

translate

1 Man,

2 Chimp,

3 Gorilla,

4 Orangutan,

5 Gibbon;

tree example = (((1,2),3),4,5);

end;

Note the translate command, which allows you to map some tokens in a Newick-format tree de-

scription (typically integers) to real taxon (terminal node) names. Note also that the tree is given

without branch lengths; this is permitted by the Newick format. In a commonly used extension of
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Figure 11: The Felsenstein tree data model (FTM). Each node is broken up into nodelets, this

facilitates greatly rerooting and polytomous trees.

the Nexus tree format, we can also specify whether the tree is rooted or unrooted using the tags

[& R] (for rooted) and [& U] (for unrooted). The tree above would then be given as

tree example = [&U] (((1,2),3),4,5);

to indicate that it should be understood as an unrooted tree (instead of a rooted tree with a true

basal trichotomy).

As Felsenstein mentions, it is likely that the Newick format will be replaced, or at least com-

plemented, by an XML standard for describing trees. The XML code below was suggested by

Felsenstein (2004):

<phylogeny>

<clade>

<clade length=0.06>

<clade length=0.102><name>A</name></clade>
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<clade length=0.23><name>B</name></clade>

</clade>

<clade length=0.4><name>C</name></clade>

</clade>

</phylogeny>

Note the use of the tag ’clade’ for subtrees and ’phylogeny’ for the entire tree. To preserve more

of the NEXUS format, one could perhaps have used the term ’tree’ instead of ’phylogeny’. The

phylogeny (or tree) tag would presumably be able to hold information on whether the tree is rooted

or unrooted, and the phylogeny could also contain a name tag if the tree is named.

5 Some Simple Tree Algorithms

Reference: Felsenstein Chapter 35: pp. 587-589.

Most algorithms on trees involve repeating the same operation on each node (or branch) of the tree

in turn, either passing from the tips of the tree down to the root or from the root up to the tips.

Biologists often refer to these traversals as the downpass and the uppass sequence, respectively. In

computer science they are known as the postorder (downpass) and preorder (uppass) traversals,

respectively. There is also an inorder traversal but it is rarely used for evolutionary trees.

Algorithm 1 Postorder traversal algorithm

Traverse left descendant of p

Traverse right descendant of p

Carry out f(p) on p

Assume that, for each node p, we want to implement a function f(p). Then the postorder traversal

is easily implemented as a recursive function (Algorithm 1). It is called postorder traversal because

the function is carried out after passing through the subtree rooted at p. The preorder traversal

algorithm is similar (Algorithm 2) but the function is now carried out before passing through the

subtree rooted at p.

Algorithm 2 Preorder traversal algorithm

Carry out f(p) on p

Traverse left descendant of p

Traverse right descendant of p
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If you want to minimize the use of recursive algorithms, you can generate an array of node (or

branch) pointers in postorder traversal order using a recursive function once. Anytime you need a

postorder traversal of the tree after this initial call, you can then simply loop over the elements of

the downpass node array in order. Similarly, a preorder traversal is implemented by looping over

the elements in the downpass array in reverse order.

The following code illustrates how you can create a postorder traversal array using Java (assuming

rooted trees represented using BTM):

public class Tree {

public Node [] downPass; // use as pointers

public Node theRoot; // use as pointer

private int index;

private Node [] theNodes; // this is where we actually keep the nodes

// code to construct the tree and set theRoot appropriately

public void GetDownPass (void) {

index = 0;

DownPass (theRoot);

}

private void DownPass (Node p) {

if (!p.tip)

{

DownPass (Node p.leftdesc);

DownPass (Node p.rightdesc);

}

downPass[index++] = p;

}

}

The downPass array can then be accessed by using code such as

for (int i=0; i<theTree.GetNumNodes(); i++) {
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Node p = theTree.allDownPass[i];

// Do something with the node p here

}

Note that the downPass[] array is made public here, which is convenient but exposes the array to

users of the tree class. Better encapsulation can be provided, for instance, by using get functions to

access the elements of the downPass[] array. In many algorithms we need to handle only internal

nodes, so it makes good sense to keep postorder arrays of both all the nodes and only the interior

nodes in the tree (including the root).

To print a tree in Newick format, it is convenient to use a recursive algorithm for printing a subtree

rooted at p and call it initially with the root of the tree. If we use the BTM and the convention

described above for storing ordered and unordered binary trees, the algorithm needs to include an

extra branch for the ‘root’ of the tree (Algorithm 3). Note that the algorithm will not print the

semicolon required after the parenthetical description of the tree, so this element will have to be

added.

Algorithm 3 Recursive algorithm for printing a tree (BTM unordered or ordered)

if p is not tip then

Print ‘(’ and left subtree of p

Print ‘,’ and right subtree of p

if p is ‘root’ of unrooted tree then

Print ‘,’ and ancestor subtree of p

end if

Print ‘)’

end if

Print name of p (if any)

Print ‘:’ and branch length of p (if any)

Almost anything you can do in a recursive algorithm can also be done using an ordinary algorithm.

For instance, you can print a BTM unrooted or rooted tree using a non-recursive algorithm if you

add an integer member (let’s call it xp) to each node p and use that to indicate whether the node is

being visited the first, second, or third time; the ‘root’ of an unrooted tree will actually be visited

also a fourth time (Algorithm 4). The algorithm starts with p being the root node (ρ) of the tree.

To construct a binary rooted or unrooted BTM tree from a Newick-format string, you can use a

recursive algorithm for reading a subtree rooted at node p (Algorithm 5). It uses a global index

variable (i), which indicates the position from which we are currently reading the string or array
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Algorithm 4 Nonrecursive algorithm for printing a tree (BTM unordered or ordered)

for all p do

xp ← 0

end for

p← ρ

while p 6= ∅ do
xp ← xp + 1

if p is not tip then

if xp = 1 then

Print ‘(’

p← left descendant of p

else if xp = 2 then

Print ‘,’

p← right descendant of p

else if xp = 3 and p is ‘root’ of unrooted tree then

Print ‘,’

p← ancestor of p

else if xp ≥ 3 then

Print ‘)’

end if

end if

if xp ≥ 3 or p is tip then

Print name of p (if any)

Print ‘:’ and branch length of p (if any)

if xp > 3 (‘root’ of unrooted tree) then

p← ∅
else

p← ancestor of p

end if

end if

end while

s containing the Newick-format tree. You start the algorithm by setting i = 0 and calling it with

the root of the tree.

Again, the same task can be accomplished using a non-recursive algorithm (Algorithm 6). It uses

a semicolon to mark the end of the string or array containing the tree description; any other way
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Algorithm 5 Recursive algorithm for reading a tree (BTM unrooted or rooted)

if s[i] is ‘(’ then

i← i+ 1

Create a new node q

Set left descendant of p to q

Set ancestor of q to p

Read subtree rooted at q

Check that s[i] is ‘,’

i← i+ 1

Create a new node q

Set right descendant of p to q

Set ancestor of q to p

Read subtree rooted at q

if p is ’root’ of unrooted tree then

Check that s[i] is ‘,’

i← i+ 1

Create a new node q

Set ancestor of p to q

Set ancestor of q to p

Read subtree rooted at q

end if

Check that s[i] is ‘)’

i← i+ 1

end if

Read name of p (if any)

Read ‘:’ and branch length of p (if any)

Set i to index of next character to read

of determining the end of the tree description would work equally well.

If you are interested in exploring the PTM, here is a snippet of Java code indicating the basic

recursive algorithm for a postorder traversal:

public void Traverse (Node p) {

Node q;

for (q = p.left; q != null; q=q->left) {

Traverse (q);
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Algorithm 6 Nonrecursive algorithm for reading a tree (BTM unrooted or rooted)

i← 0

while s[i] is not ‘;’ do

if s[i] is ‘(’ then

i← i+ 1

Create a new node q

Set left descendant of p to q

Set ancestor of q to p

p← q

else if s[i] is ‘,’ then

Create a new node q

if p is left descendant of its ancestor then

Set p to ancestor of p

Set right descendant of p to q

else

Set p to ancestor of p

Set ancestor of p to q

end if

Set ancestor of q to p

p← q

else if s[i] is ‘)’ then

Set p to ancestor of p

else

Read label of p (if any)

Read ‘:’ and branch length of p (if any)

Set i to index of next character to read

end if

end while

}

F(p);

}

The same code could be written like this using the FTM (assuming that a tip node has an out

pointer pointing to itself):

public void Traverse (Node p) {
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Node q;

for (q = p.next; q != p; q=q->next) {

Traverse (q.out);

}

F(p);

}

Both models give quite compact code for reading a tree since we do not have to deal with any

special cases for unrooted trees. The recursive tree writing algorithm could be written like this for

PTM:

String treeDescription = "";

public void PrintSubtree (Node p) {

if (!p.tip) {

treeDescription += "(";

for (Node q = p.left; q != null; q = q.sib) {

PrintSubtree (q);

if (q.sib != null)

treeDescription += ",";

}

treeDescription += ")";

}

if (p.tip)

treeDescription += p.GetLabel();

if (hasBrlens && p != theRoot) {

treeDescription += ":";

treeDescription += p.GetLength();

}

}

Note the clean code due to the lack of special cases. The same algorithm might look almost identical

for FTM:
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String treeDescription = "";

public void PrintSubtree (Node p) {

if (!p.tip) {

treeDescription += "(";

for (Node q = p.next; q != p; q = q.next) {

PrintSubtree (q.out);

if (q.next != p)

treeDescription += ",";

}

treeDescription += ")";

}

if (p.tip)

treeDescription += p.GetLabel();

if (hasBrlens && p != theRoot) {

treeDescription += ":";

treeDescription += p.GetLength();

}

}

As stated previously, the FTM representation has the advantage that it can be rerooted more easily

than BTM and PTM. However, it is also fairly common that we want to pass from a node p down

to the root. This is easily done with BTM or PTM using code such as:

while (p != theRoot) {

// do something with p

p = p.anc;

}

The FTM representation, on the other hand, requires slightly more complex code:

while (p != theRoot) {

// do something with p
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p = p.out;

// assume we have a boolean called top marking whether the

// node is on the top of a branch

while (!p.top)

p = p.next;

}

6 Study Questions

1. Define a clock tree, a non-clock tree, a rooted tree, and an unrooted tree.

2. Define terminal node, interior node, root, and branch.

3. Can a clock tree be unrooted? Can a non-clock tree be rooted?

4. How many branches are there in a rooted binary tree with n terminals? How many interior

nodes are there (count the root as an interior node)?

5. How many branches are there in an unrooted binary tree with n terminals? How many interior

nodes are there?

6. What is the difference between a cladogram and a phylogram?

7. Of the rooted trees given below (Fig. 12), which have identical topology? Which trees have

identical topology after the root is removed?

Figure 12: Some rooted trees. Although all of them look different, some of them specify the same

topology

A B C D A B C D C D B A A D C B

A B C D E F G H A B C D E F G H B A C D E F H G A B C E D F G H

a b c d

e f g h
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8. Give a recursive algorithm performing the function f(p) in postorder sequence on the nodes

p of a tree represented by the PTM.

9. Describe a complete data structure for the FTM using Java code.

10. Show how a postorder array of nodes for the BTM can be used to perform a function f(p)

on each node of a tree in a preorder traversal.
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