
CEB COMPUTATIONAL EVOLUTIONARY BIOLOGY

ISC 5317 / ISC 4933



COMPUTATIONAL EVOLUTIONARY BIOLOGY
ISC-5317:
Graduate course: Computational Evolutionary Biology

Class Meeting

Lectures:
Tuesdays and Thursdays 11:00AM-12:15 PM Dirac Science Library Room 152

Instructor

Peter Beerli
Office: 150-T DSL
Email: beerli@fsu.edu
Phone: (850) 559-9664

Class Assistant

Kyle Shaw
Office: 150-J DSL
Email: shawk3@outlook.com
Phone: TBA

Office Hours

• Peter Beerli: by appointment (email: beerli@fsu.edu or text to 850 559 9664); or just come
to my office, If do not have a meeting I will have time for you.

• Kyle Shaw: we will set up an open lab session every week so that students can get help on
python and the assignments.

Objectives

This course will introduce students to methods used in phylogenetics and population genetics and
writing computer programs using such methods. Primary objectives of the course are:

1. to expose students to a large set of modern methods used in the field of theoretical evolu-
tionary biology, and learn about the details of often used methods in phylogenetic analysis
and population genetics analysis.

2. to introduce students to the programming aspects of the field. Students will learn and use the
programming language Python to develop scripts and to understand details of the methods.

3. to empower students to develop programming and analysis skills that involve development
of scripts to change data format, execute applications, and analyze results.



COMPUTATIONAL EVOLUTIONARY BIOLOGY

ISC-5317:
Graduate course: Computational Evolutionary Biology

Class Meeting

Lectures:
Tuesdays and Thursdays 11:00AM-12:15 PM Dirac Science Library Room 152

Instructor

Peter Beerli
Office: 150-T DSL
Email: beerli@fsu.edu
Phone: (850) 559-9664

Class Assistant

Kyle Shaw
Office: 150-J DSL
Email: shawk3@outlook.com
Phone: TBA

Office Hours

• Peter Beerli: by appointment (email: beerli@fsu.edu or text to 850 559 9664); or just come
to my office, If do not have a meeting I will have time for you.

• Kyle Shaw: we will set up an open lab session every week so that students can get help on
python and the assignments.

Objectives

This course will introduce students to methods used in phylogenetics and population genetics and
writing computer programs using such methods. Primary objectives of the course are:

1. to expose students to a large set of modern methods used in the field of theoretical evolu-
tionary biology, and learn about the details of often used methods in phylogenetic analysis
and population genetics analysis.

2. to introduce students to the programming aspects of the field. Students will learn and use the
programming language Python to develop scripts and to understand details of the methods.

3. to empower students to develop programming and analysis skills that involve development
of scripts to change data format, execute applications, and analyze results.

ISC-5317 Fall 2017

Content

Advanced computational methods are becoming increasingly important in biology. A wide range of
applications — including, for instance, identifying pathogens, tracing viral transmission pathways,
and reconstructing the geographic expansion of humans out of Africa — rely on evolutionary infer-
ence. This course will cover the methods currently used for evolutionary inference, the stochastic
models and inference principles they are based on, and how they are implemented in practice. The
students will get hands-on experience in developing computational software implementing these
methods. We expect that the students leave the course with the necessary skills to develop their
own ideas and are able to develop projects that are based on simulated data sets and scripts.

Textbook

We will have no textbook, but we have extensive handouts available through the course website.

Grading

• Grades will be based on students’ execution of the 5 (programming) assignments, each of
which involves understanding the algorithms, code design, and program documentation [100
points each]

• Either two students or a single student will work on a project on their own during the last 4
weeks of the semester and give a short presentation of their work during the last second two
classes periods. I expect that group projects are twice as large as single student projects
[100 points for the report and 100 points for the presentation]

• We will have a theory test on November 7th (midterm). [100 points]

• There will be no final exam, the project substitutes for a final examination. The total number
of points is 800.

A student who accumulates 90% or more of the possible points will receive a grade of ”A”, a
student who accumulates between 80% and 89% of the possible points will receive a grade of ”B”,
a student who accumulates between 70% and 79% of the possible points will receive a grade of
”C”, a student who accumulates between 60% and 69% of the possible points will receive a grade
of ”D”, and a student who accumulates less than 60% of the possible points will receive a grade of
”F”.

Missed/Late Assignments

Deadlines for assignments will be announced in class; late assignments will be accepted for full
grade only in cases of illness or death in the family. 5% of the total points (100pt) are deducted
per day for late assignments.

University Attendance Policy

Excused absences include documented illness, deaths in the family and other documented crises,
call to active military duty or jury duty, religious holy days, and official University activities. These
absences will be accommodated in a way that does not arbitrarily penalize students who have a

2



COMPUTATIONAL EVOLUTIONARY BIOLOGY

ISC-5317 Fall 2017

Content

Advanced computational methods are becoming increasingly important in biology. A wide range of
applications — including, for instance, identifying pathogens, tracing viral transmission pathways,
and reconstructing the geographic expansion of humans out of Africa — rely on evolutionary infer-
ence. This course will cover the methods currently used for evolutionary inference, the stochastic
models and inference principles they are based on, and how they are implemented in practice. The
students will get hands-on experience in developing computational software implementing these
methods. We expect that the students leave the course with the necessary skills to develop their
own ideas and are able to develop projects that are based on simulated data sets and scripts.

Textbook

We will have no textbook, but we have extensive handouts available through the course website.

Grading

• Grades will be based on students’ execution of the 5 (programming) assignments, each of
which involves understanding the algorithms, code design, and program documentation [100
points each]

• Either two students or a single student will work on a project on their own during the last 4
weeks of the semester and give a short presentation of their work during the last second two
classes periods. I expect that group projects are twice as large as single student projects
[100 points for the report and 100 points for the presentation]

• We will have a theory test on November 7th (midterm). [100 points]

• There will be no final exam, the project substitutes for a final examination. The total number
of points is 800.

A student who accumulates 90% or more of the possible points will receive a grade of ”A”, a
student who accumulates between 80% and 89% of the possible points will receive a grade of ”B”,
a student who accumulates between 70% and 79% of the possible points will receive a grade of
”C”, a student who accumulates between 60% and 69% of the possible points will receive a grade
of ”D”, and a student who accumulates less than 60% of the possible points will receive a grade of
”F”.

Missed/Late Assignments

Deadlines for assignments will be announced in class; late assignments will be accepted for full
grade only in cases of illness or death in the family. 5% of the total points (100pt) are deducted
per day for late assignments.

University Attendance Policy

Excused absences include documented illness, deaths in the family and other documented crises,
call to active military duty or jury duty, religious holy days, and official University activities. These
absences will be accommodated in a way that does not arbitrarily penalize students who have a

2

9th



COMPUTATIONAL EVOLUTIONARY BIOLOGYISC-5317 Fall 2017

Lectures: Topic overview

1. Processes and patterns

• Population genetics: Wright-Fisher population models, coalescence theory;
• Phylogenetics: tree structures, speciation, Gene tree versus Species tree
• Mutation models: mutation/substitution model
• Simulation of data

2. Inference:

• Parsimony and Distance methods
• Maximum likelihood, Bayesian inference, Monte Carlo, Markov chain Monte Carlo,
• Model selection
• Bootstrap/Jacknife

Each topic will include computational algorithms, problematic aspects such as convergence, bi-
ases, main focus will be on Bayesian and maximum likelihood methods.

Assignments

This list of assignments is an example, difficulty of assignments will depend on the overall class
programming skills. Each assignment topic will be introduced in detail during class. The final set
of assignments is not specified yet but it will look similar to the ones shown below:

1. Read and write a tree structure

2. Simulate data on a tree

3. Simulate data using the coalescent

4. Construct an ABC sampler to estimate the effective population size

5. Model selection using the program MIGRATE

6. Project: The project will discuss either (1) a complex analysis of data or (2) software devel-
opment or (3) a theory section we did not discuss. The project consists of two parts, a report
(of not more than 8 pages) and a presentation of 10 minutes. We will develop ideas for the
project during class.

Lecture Schedule

1. Introduction. Trees and tree representation (Aug. 29)

2. Python and trees (Aug. 31)

3. Parsimony (Sep 5)

4. Python and parsimony (Sep 7)

5. Searching for the best tree(s) (Sep 12)

4



COMPUTATIONAL EVOLUTIONARY BIOLOGY

ISC-5317 Fall 2017

Lectures: Topic overview

1. Processes and patterns

• Population genetics: Wright-Fisher population models, coalescence theory;
• Phylogenetics: tree structures, speciation, Gene tree versus Species tree
• Mutation models: mutation/substitution model
• Simulation of data

2. Inference:

• Parsimony and Distance methods
• Maximum likelihood, Bayesian inference, Monte Carlo, Markov chain Monte Carlo,
• Model selection
• Bootstrap/Jacknife

Each topic will include computational algorithms, problematic aspects such as convergence, bi-
ases, main focus will be on Bayesian and maximum likelihood methods.

Assignments

This list of assignments is an example, difficulty of assignments will depend on the overall class
programming skills. Each assignment topic will be introduced in detail during class. The final set
of assignments is not specified yet but it will look similar to the ones shown below:

1. Read and write a tree structure

2. Simulate data on a tree

3. Simulate data using the coalescent

4. Construct an ABC sampler to estimate the effective population size

5. Model selection using the program MIGRATE

6. Project: The project will discuss either (1) a complex analysis of data or (2) software devel-
opment or (3) a theory section we did not discuss. The project consists of two parts, a report
(of not more than 8 pages) and a presentation of 10 minutes. We will develop ideas for the
project during class.

Lecture Schedule

1. Introduction. Trees and tree representation (Aug. 29)

2. Python and trees (Aug. 31)

3. Parsimony (Sep 5)

4. Python and parsimony (Sep 7)

5. Searching for the best tree(s) (Sep 12)

4



COMPUTATIONAL EVOLUTIONARY BIOLOGY

ISC-5317 Fall 2017

Lectures: Topic overview

1. Processes and patterns

• Population genetics: Wright-Fisher population models, coalescence theory;
• Phylogenetics: tree structures, speciation, Gene tree versus Species tree
• Mutation models: mutation/substitution model
• Simulation of data

2. Inference:

• Parsimony and Distance methods
• Maximum likelihood, Bayesian inference, Monte Carlo, Markov chain Monte Carlo,
• Model selection
• Bootstrap/Jacknife

Each topic will include computational algorithms, problematic aspects such as convergence, bi-
ases, main focus will be on Bayesian and maximum likelihood methods.

Assignments

This list of assignments is an example, difficulty of assignments will depend on the overall class
programming skills. Each assignment topic will be introduced in detail during class. The final set
of assignments is not specified yet but it will look similar to the ones shown below:

1. Read and write a tree structure

2. Simulate data on a tree

3. Simulate data using the coalescent

4. Construct an ABC sampler to estimate the effective population size

5. Model selection using the program MIGRATE

6. Project: The project will discuss either (1) a complex analysis of data or (2) software devel-
opment or (3) a theory section we did not discuss. The project consists of two parts, a report
(of not more than 8 pages) and a presentation of 10 minutes. We will develop ideas for the
project during class.

Lecture Schedule

1. Introduction. Trees and tree representation (Aug. 29)

2. Python and trees (Aug. 31)

3. Parsimony (Sep 5)

4. Python and parsimony (Sep 7)

5. Searching for the best tree(s) (Sep 12)

4

ISC-5317 Fall 2017

6. Substitution models and distance (Sep 14)

7. Substitution models general Sep 19)

8. Substitution model exercise Sep 21)

9. Rate variation and more substitution models Sep 26)

10. Maximum Likelihood (Sep 28)

11. Maximum Likelihood (Oct 3)

12. Bayesian inference (Oct 5)

13. Markov chain Monte Carlo (Oct 10)

14. ABC – approximate Bayesian computing (Oct 12)

15. The coalescent (Oct 17)

16. Coalescent simulation and extensions to the coalescent (Oct 19)

17. Gene tree vs Species tree (Oct 24)

18. Gene tree vs Species tree (Oct 26)

19. Model Selection (Oct 31)

20. Bootstrap/Jacknife (Nov 2)

21. Review session (Nov 7)

22. Mid term (Nov 9)

23. Project (Nov 14)

24. Project (Nov 16)

25. Project (Nov 21)

26. Project (Nov 28)

27. Project (Nov 30)

28. Presentation (Dec 5)

29. Presentation (Dec 7)

Peter Beerli, August 2017

5

ISC-5317 Fall 2017

6. Substitution models and distance (Sep 14)

7. Substitution models general Sep 19)

8. Substitution model exercise Sep 21)

9. Rate variation and more substitution models Sep 26)

10. Maximum Likelihood (Sep 28)

11. Maximum Likelihood (Oct 3)

12. Bayesian inference (Oct 5)

13. Markov chain Monte Carlo (Oct 10)

14. ABC – approximate Bayesian computing (Oct 12)

15. The coalescent (Oct 17)

16. Coalescent simulation and extensions to the coalescent (Oct 19)

17. Gene tree vs Species tree (Oct 24)

18. Gene tree vs Species tree (Oct 26)

19. Model Selection (Oct 31)

20. Bootstrap/Jacknife (Nov 2)

21. Review session (Nov 7)

22. Mid term (Nov 9)

23. Project (Nov 14)

24. Project (Nov 16)

25. Project (Nov 21)

26. Project (Nov 28)

27. Project (Nov 30)

28. Presentation (Dec 5)

29. Presentation (Dec 7)

Peter Beerli, August 2017

5



PHYLOGENETIC TREES

ISC5317-Fall 2007-PB Computational Evolutionary Biology

than the term population. A lineage that lasted or is predicted to last some critical amount of

time (say 10,000 to 100,000 years or more) is typically referred to as a species, whereas a lineage

with shorter life span is called a population and not a species. There is also some anthropocentrism

involved, so we tend to call lineages closely related to us separate species (eg. Neanderthals) whereas

similar amounts of divergence would probably be understood as population-level di↵erentiation in

invertebrates.

An evolutionary tree is typically drawn with the root at the bottom (Fig. 1) unlike other types

of trees, such as those used in Computer Science, which by convention are drawn with the root at

the top. The evolutionary tree (or any other tree for that matter) consists of two components: the

divergence points and the lines connecting them. Biologists typically refer to the divergence points

as nodes and the lines connecting them as branches or sometimes internodes (Fig. 1).

Root node

Interior node

Terminal node

Internode or Branch

T
im

e

Figure 1: An evolutionary tree

The nodes in an evolutionary tree fall into three types: terminal nodes, interior nodes, and the

root node (Fig. 1). The terminal nodes either represent current lineages or lineages that have gone

extinct (evolutionary dead ends). The interior nodes represent slightly di↵erent things depending

on whether the tree is a species tree or a gene tree. If it is a species tree, then an interior node

symbolizes a speciation event whereby one ancestral (mother) lineage diverges into two descendant

(daughter) lineages. The two daughter lineages are also referred to as sister lineages. Note that

2



PHYLOGENETIC TREES
ISC5317-Fall 2007-PB Computational Evolutionary Biology

Root node

Interior node

Terminal node

Internode or Branch

T
im

e

Figure 2: An evolutionary tree with rectangular branches.

2 More About Trees

An evolutionary tree is a special case of the general concept of trees, and it is characterized by

several special properties. First, it is rooted, that is, it has a root. Another way of saying the

same thing is that the tree is directed, there is an explicit time direction in it (otherwise we would

not be able to identify ancestors and descendants). Second, the tree is a clock tree, meaning that

branch lengths are measured in time units. A clock tree is sometimes also called a linearized tree,

an ultrametric tree, or a (labeled) history.

In practice, it is seldom possible to directly infer an evolutionary tree of the type described above,

and we will often use the term evolutionary tree to refer to simpler models. In particular, it

is di�cult to estimate the divergence times because of variation in evolutionary rates. For this

reason, we often have to be satisfied with trees where branch lengths are measured in terms of the

amount of evolutionary change instead of in terms of time. Such a tree is referred to as a non-clock

tree or an additive tree. If we consider a species tree for a set of extant (now living) species, where

all terminals are of the same age, then a clock tree has all terminals at the same level (Fig. 3a)

whereas a non-clock tree (potentially) has the terminals at di↵erent levels (Fig. 3b). In the non-

4



PHYLOGENETIC TREES

ISC5317-Fall 2007-PB Computational Evolutionary Biology

clock tree, the terminals on short branches are more similar to the most recent common ancestor

of the group than the terminals that sit on long branches. Biologists sometimes refer to additive

trees as phylograms.

A

C

D

BA C D B

Figure 3: Comparison between a non-clock tree (right) and a clock tree (left).

As we will discover soon, many methods of inferring evolutionary trees cannot estimate divergence

times nor can they place the root in the tree. Such a method will result in an unrooted tree, also

called an undirected tree because of its lack of a time direction (Fig. 4a). An unrooted tree is

always non-clock. If you are interested in the position of the root, which is almost always the case,

you have to use a separate rooting method to find it. A common method is to include one or more

reference lineages, also called outgroups, in your analysis. After the analysis, the root is placed

between the outgroup and the lineage being studied (the ingroup) (Fig. 4b).

Fr
og

H
u
m
a
n

C
h
ic
k
e
n

Rabbit

Opossum

Fr
og

H
u
m
a
n

C
h
ic
k
e
n

Rabbit

Opossum

Chicken

Opossum

Human

Rabbit

Frog

a b c

Figure 4: An unrooted tree (a) can be rooted between an outgroup and the study group (the

ingroup) (b) to give a rooted tree (c).

Biologists are sometimes just interested in the branching structure or branching order of an evolu-

5



PHYLOGENETIC TREES

ISC5317-Fall 2007-PB Computational Evolutionary Biology

clock tree, the terminals on short branches are more similar to the most recent common ancestor

of the group than the terminals that sit on long branches. Biologists sometimes refer to additive

trees as phylograms.

A

C

D

BA C D B

Figure 3: Comparison between a non-clock tree (right) and a clock tree (left).

As we will discover soon, many methods of inferring evolutionary trees cannot estimate divergence

times nor can they place the root in the tree. Such a method will result in an unrooted tree, also

called an undirected tree because of its lack of a time direction (Fig. 4a). An unrooted tree is

always non-clock. If you are interested in the position of the root, which is almost always the case,

you have to use a separate rooting method to find it. A common method is to include one or more

reference lineages, also called outgroups, in your analysis. After the analysis, the root is placed

between the outgroup and the lineage being studied (the ingroup) (Fig. 4b).

Fr
og

H
u
m
a
n

C
h
ic
k
e
n

Rabbit

Opossum

Fr
og

H
u
m
a
n

C
h
ic
k
e
n

Rabbit

Opossum

Chicken

Opossum

Human

Rabbit

Frog

a b c

Figure 4: An unrooted tree (a) can be rooted between an outgroup and the study group (the

ingroup) (b) to give a rooted tree (c).

Biologists are sometimes just interested in the branching structure or branching order of an evolu-

5



PHYLOGENETIC TREES

ISC5317-Fall 2007-PB Computational Evolutionary Biology

tionary tree, and not in the branch lengths. The branching structure is referred to as the topology

of a tree and is represented in a cladogram. The same cladogram can be drawn in many di↵erent

ways (Fig. 5).

a b c d e a b c d e a b c d e

Figure 5: The same tree topology (cladogram) can be drawn in many di↵erent ways because, among

other things, the branch lengths are arbitrary.

Evolutionary biologists typically restrict their attention to trees that are binary or dichotomous,

meaning that there are only two descendants of each interior node. Sometimes, trees with three

or more descendants from a single node, called polytomous trees, are also considered. In many

situations, polytomous trees are adequately approximated by sets of binary trees with short interior

branches (Fig. 6).

Regardless of its type (clock, rooted non-clock or unrooted) it is always possible to draw the same

tree in di↵erent ways in a two-dimensional figure because of the rotational freedom around each

node. For instance, in a rooted tree we can shift the left and right descendants of each node without

changing the meaning of the tree (Fig. 7).

In Graph Theory and Computer Science, there is a di↵erent set of terms used for trees, and you

often see these used in computational evolutionary biology as well. They are vertex (for node),

edge (for branch), leaf (for terminal node), and root (for the root node). In this terminology, the

degree of a vertex is the number of branches connected to it. Thus, an interior node of a binary

tree has degree three, a leaf has degree one and the root has degree two. An edge weight is the

same as the length of a branch.

It is often practical to refer to subtrees within a larger tree. Biologists refer to them as clades. A

clade can defined as a node i and all of its descendants (or, alternatively, as the subtree rooted at

node i). Clades can also be called taxa (singular taxon) or operational taxonomix units (OTUs).

Taxa are used for named groups in a biological classification whereas OTUs are groups that lack

6



PHYLOGENETIC TREES

ISC5317-Fall 2007-PB Computational Evolutionary Biology

a b c d e

a b

c

a b c d e

ac b d ea b cd e

d

Figure 6: A tree with a polytomy (a) can be thought of as being approximated by a set of of binary

trees with very short interior branches (b to d).

formal names. It is not uncommon to see evolutionary trees in which the terminals are taxa above

the species level (also called higher taxa). For instance, a cladogram may give the relationships

among a set of genera or families, each containing many species. Since individual evolutionary

lineages can also be called taxa or OTUs, it is generally true that the terminals in a species tree

are taxa or OTUs.

Closely related to the concept of a subtree is the concept of a split or taxon bipartition. Each branch

in a tree divides the terminal nodes (taxa) into two disjoint sets, one on each side of the branch.

We will be using splits when we describe methods for assessing the robustness in the inference of

evolutionary trees.

3 Computer Representation of Trees

Reference: Felsenstein Chapter 35, pp. 585-590.

7



PHYLOGENETIC TREESISC5317-Fall 2007-PB Computational Evolutionary Biology

A B C D ABCDABC D

Figure 7: The same tree can be drawn in many di↵erent ways because of the rotational freedom

around each node.

Much of this course will be devoted to the description of algorithms operating on trees. For this

purpose, we will need a data model for trees. A simple model for rooted binary trees, found in

many computer science texts, is given below (Fig. 8; see also Felsenstein, Fig.35.1). We will be

referring to this model as the Binary Tree Data Model (BTM). The idea is to use a simple data

structure for each node, containing pointers to the two descendant nodes and the ancestral node.

The terminal nodes have their descendant node pointers set to NULL and the root node has its

ancestral node pointer set to NULL. Strictly speaking, the pointer to the ancestral node is not

needed but it is convenient to have it in many cases. Felsenstein also includes a boolean variable

indicating whether a node is terminal (a tip). Again, this can be figured out from the pointers, so

this variable is only there for convenience. If we need to store branch lengths, we can simply store

them in the node structure of the node above the branch. The branch length variable needs to be

added to the node structure in Felsenstein’s figure. In an object oriented computer language, we

would typically store the nodes inside a tree class, which would contain a pointer to the root of the

tree.

A complication arises when we want to represent unrooted trees using this structure, since they do

not have a root node nor a natural ancestor - descendant direction to them. One way of solving

the problem is to treat the tree as if it were rooted on an internal node, typically the interior

node adjacent to the outgroup terminal (Fig. 9). We can easily represent all of the nodes that are

descendants of the interior ‘root’ node using the BTM. The interior root node is then connected to

two of its subtrees using its left and right pointers, and the third subtree using its ancestor pointer.

All the branch lengths around the interior root node are now stored in other nodes, so the interior

root node does not have a branch length. By using this type of structure, we have forced a direction

onto the unrooted tree.

8











NEWICK TREE FORMAT

The Newick Standard for representing trees in computer-readable 
form makes use of the correspondence between trees and nested 
parentheses, noticed in 1857 by the famous English mathematician 
Arthur Cayley. If we have this rooted tree on the left then in the tree 
file it is represented by the following sequence of printable 
characters:

(B,(A,C,E),D);
The tree ends with a semicolon. The bottommost 
node in this tree is an interior node, not a tip. Interior 
nodes are represented by a pair of matched 
parentheses. Between them are representations of 
the nodes that are immediately descended from that 
node, separated by commas. In the above tree, the 
immediate descendants are B, another interior node, 
and D. The other interior node is represented by a 
pair of parentheses, enclosing representations of its 
immediate descendants, A, C, and E. In our 
example these happen to be tips, but in general they 
could also be interior nodes and the result would be 
further nestings of parentheses, to any level.
Tips are represented by their names. A name can be 
any string of printable characters except blanks, 
colons, semicolons, parentheses, and square 
brackets.

http://www-history.mcs.st-andrews.ac.uk/history/Biographies/Cayley.html


NEWICK TREE FORMAT

Because you may want to include a blank in a name, it is assumed that an underscore character ("_") stands for a blank; 
any of these in a name will be converted to a blank when it is read in. Any name may also be empty: a tree like
(,(,,),);
is allowed. Trees can be multifurcating at any level.

Branch lengths can be incorporated into a tree by putting a real number, with or without 
decimal point, after a node and preceded by a colon. This represents the length of the 
branch immediately below that node. Thus the above tree might have lengths represented 
as:

(B:6.0,(A:5.0,C:3.0,E:4.0):5.0,D:11.0);



NEWICK TREE FORMAT

The tree starts on the first line of the file, and can continue to subsequent lines. It is best to proceed to a new line, if at 
all, immediately after a comma. Blanks can be inserted at any point except in the middle of a species name or a branch 
length.
The above description is actually of a subset of the Newick Standard. For example, interior nodes can have names in 
that standard. These names follow the right parenthesis for that interior node, as in this example:

(B:6.0,(A:5.0,C:3.0,E:4.0)Ancestor1:5.0,D:11.0);

Examples
To help you understand this tree representation, here are some trees in the above form:

((raccoon:19.19959,bear:6.80041):0.84600,((sea_lion:11.99700, seal:12.00300):7.52973,((monkey:100.85930,cat:
47.14069):20.59201, weasel:18.87953):2.09460):3.87382,dog:25.46154);

(Bovine:0.69395,(Gibbon:0.36079,(Orang:0.33636,(Gorilla:0.17147,(Chimp:0.19268, Human:0.11927):0.08386):
0.06124):0.15057):0.54939,Mouse:1.21460):0.10;

(Bovine:0.69395,(Hylobates:0.36079,(Pongo:0.33636,(G._Gorilla:0.17147, (P._paniscus:0.19268,H._sapiens:0.11927):
0.08386):0.06124):0.15057):0.54939, Rodent:1.21460);
A;

((A,B),(C,D));

(Alpha,Beta,Gamma,Delta,,Epsilon,,,);



NEWICK TREE FORMAT

(Non-)Uniqueness
The Newick Standard does not make a unique representation of a tree, for two reasons. First, the left-
right order of descendants of a node affects the representation, even though it is biologically 
uninteresting. Thus, to a biologist

(A,(B,C),D);

is the same tree as

(A,(C,B),D);

which is in turn the same tree as

(D,(C,B),A);

and that is the same tree as

(D,A,(C,B));

and

((C,B),A,D);



NEWICK TREE FORMAT

Rooted and unrooted trees
In addition, the standard is representing a rooted tree. For many biological purposes we may not be 
able to infer the position of the root. We would like to have a representation of an unrooted tree 
when describing inferences in such cases. Here the convention is simply to arbitrarily root the tree 
and report the resulting rooted tree. Thus

(B,(A,D),C);

would be the same unrooted tree as

(A,(B,C),D);

and as

((A,D),(C,B));



NEWICK TREE FORMAT

The Newick Standard was adopted 26 June 1986 
by an informal committee meeting convened by 
Joe Felsenstein during the Society for the Study 
of Evolution meetings in Durham, New 
Hampshire and consisting of James Archie, 
William H.E. Day, Wayne Maddison, 
Christopher Meacham, F. James Rohlf, David 
Swofford, and myself. (The committee was not 
an activity of the SSE nor endorsed by it). The 
reason for the name is that the second and final 
session of the committee met at Newick's 
restaurant in Dover, New Hampshire, and we 
enjoyed the meal of lobsters. The tree 
representation was a generalization of one 
developed by Christopher Meacham in 1984 for 
the tree plotting programs that he wrote for the 
PHYLIP package while visiting Seattle. His visit 
was a sabbatical leave from the University of 
Georgia, which thus indirectly partly funded that 
work.

http://cms.gogrid.evolutionsociety.org/
http://cms.gogrid.evolutionsociety.org/
http://www.csulb.edu/depts/biology/pages/faculty/archie.shtml
http://salticidae.org/wpm/home.html
http://phylogenomics.berkeley.edu/members/
http://life.bio.sunysb.edu/ee/rohlf/
http://fds.duke.edu/db/aas/Biology/faculty/david.swofford
http://fds.duke.edu/db/aas/Biology/faculty/david.swofford
http://evolution.gs.washington.edu/felsenstein.html
https://plus.google.com/101592490501179510715/about?gl=us&hl=en
https://plus.google.com/101592490501179510715/about?gl=us&hl=en
http://evolution.gs.washington.edu/phylip.html


PHYLOGENETIC TREESISC5317-Fall 2007-PB Computational Evolutionary Biology

left
right
ancestor

Null
Null
1

left
right
ancestor

1
C
Null

left
right
ancestor

Null
Null
2

left
right
ancestor

A
B
2

left
right
ancestor

Null
Null
1

A B C

1

2

Figure 8: The Binary Tree Data Model (BTM).

Clearly, truly polytomous trees cannot be represented using the BTM. A data structure similar to

the BTM that accommodates polytomous trees uses pointers from a node to its ancestor, leftmost

descendant, and to one of its siblings (Fig. 10). This structure can easily accommodate unrooted

trees by arbitrarily selecting one of the interior nodes as the ’root’ of the tree. We will refer to this

data structure as the Polytomous Tree Data Model (PTM).

A somewhat di↵erent structure has been pioneered by Felsenstein (Fig. 11; see also Felsenstein:

Fig. 35.2) and will be referred to as the Felsenstein Tree Data Model (FTM). It uses rings of

nodelets to represent nodes. Each nodelet has a ‘next’ pointer to the next node in the ring and an

‘out’ pointer to the nodelet on the other end of the branch to which it is connected. This structure

can accommodate both binary and polytomous trees as well as rooted and unrooted trees. An

advantage of this data structure is that it can be rerooted more easily than the previous two types.

Branch lengths can either be stored in separate data structures pointed to by both of the adjacent

nodelets, or they can be contained as member variables of both of the adjacent nodelets, and set

functions can then be used to make sure that the two member variables representing the same

branch are always in sync. It is convenient to have the nodelet structure or class contain a boolean

member indicating whether the nodelet points down in the tree, so that we know where to start

and stop when cycling through the nodelets representing a node of the tree.

9



PHYLOGENETIC TREESISC5317-Fall 2007-PB Computational Evolutionary Biology

left
right
ancestor
root

Null
Null
1
No

left
right
ancestor
root

1
C
D
Yes

left
right
ancestor
root

Null
Null
2
No

left
right
ancestor
root

A
B
2
No

left
right
ancestor
root

Null
Null
1
No

A B C

1

2

left
right
ancestor
root

Null
Null
2
No

D

left
right
ancestor
root

Null
Null
1
No

left
right
ancestor
root

C
D
1
No

left
right
ancestor
root

Null
Null
2
No

left
right
ancestor
root

B
2
A
Yes

left
right
ancestor
root

Null
Null
1
No

A B C

1

2

left
right
ancestor
root

Null
Null
2
No

D

A B CA B C

11

2 2

DD

Figure 9: A modification of BTM to accommodate unrooted trees. The two trees have di↵erent

roots, the pointers change in all interior nodes.

4 Text and XML Representation of Trees

Reference: Felsenstein Chapter 35: pp. 590-591.

There is often a need to describe a tree in text format, for instance for storing trees resulting from

an analysis. This is typically done using the Newick format described in Felsenstein (Chapter 35,

pp. 590). A shortcoming of the Newick format is that it can only specify rooted trees. An unrooted

tree must be converted to one of its rooted representations before it can be expressed in Newick

format. If we arbitrarily root an unrooted tree on one of its branches, however, there is one branch

length that will have to be arbitrarily divided into two components, one on each side of the root

(Fig. 9a). A better method is to root the tree on an interior node and write it as if it had a basal

trichotomy (since the interior ‘root’ node will have three ‘descendants’ unlike all other nodes, which

have only two). If there is a single outgroup terminal, the tree is typically rooted on the interior

node adjacent to that terminal. Assume we have an unrooted binary tree with terminals labeled A

to D and the branch lengths labeled v1 to v5 and that we root it on the interior node adjacent to the

tip D (alternatively, we can describe this as rooting the tree on D) (Fig. 9b). The Newick-format

description would now be ((A:v1,B:v2):v3,C:v4,D:v5), as if the tree had a basal trichotomy involving

C, D, and the ancestor of A and B. Note how this solution gives us a natural place to put all branch

lengths. The basal trichotomy solution only works if we restrict our attention to binary trees, since

10



PHYLOGENETIC TREESISC5317-Fall 2007-PB Computational Evolutionary Biology

left

sib

ancestor

Null

C

1

left

sib

ancestor

1

Null

Null

left

sib

ancestor

Null

Null

2

left

sib

ancestor

A

D

2

left

sib

ancestor

Null

Null

1

BA C D

1
1

2

2

left

sib

ancestor

Null

B

1

BA C D

Figure 10: The polytomous tree data model (PTM).

there is no way we can distinguish a truly rooted tree with a basal trichotomy from an unrooted

tree written as if it were a rooted tree with a basal trichotomy.

A Newick-format tree is often contained in a tree block of a NEXUS file. The general structure of

a NEXUS file containing a tree block is:

#NEXUS

begin trees;

translate

1 Man,

2 Chimp,

3 Gorilla,

4 Orangutan,

5 Gibbon;

tree example = (((1,2),3),4,5);

end;

Note the translate command, which allows you to map some tokens in a Newick-format tree de-

scription (typically integers) to real taxon (terminal node) names. Note also that the tree is given

without branch lengths; this is permitted by the Newick format. In a commonly used extension of

11



PHYLOGENETIC TREESISC5317-Fall 2007-PB Computational Evolutionary Biology

1

BA C

1

2

2

BA
C

next
back
top

1-1
A
No

next
back
top

1-2
B
No

next
back
top

1-3
2
Yes

back
top

1
Yes

back
top

1
Yes

back
top

2
Yes

next
back
top

2-1
A
No

next
back
top

2-2
B
No

next
back
top

2-3
2
Yes

1-3

1-2

1-1

2-3

2-2

2-1

Figure 11: The Felsenstein tree data model (FTM). Each node is broken up into nodelets, this

facilitates greatly rerooting and polytomous trees.

the Nexus tree format, we can also specify whether the tree is rooted or unrooted using the tags

[& R] (for rooted) and [& U] (for unrooted). The tree above would then be given as

tree example = [&U] (((1,2),3),4,5);

to indicate that it should be understood as an unrooted tree (instead of a rooted tree with a true

basal trichotomy).

As Felsenstein mentions, it is likely that the Newick format will be replaced, or at least com-

plemented, by an XML standard for describing trees. The XML code below was suggested by

Felsenstein (2004):

<phylogeny>

<clade>

<clade length=0.06>

<clade length=0.102><name>A</name></clade>

12



PHYLOGENETIC TREES

ISC5317-Fall 2007-PB Computational Evolutionary Biology

<clade length=0.23><name>B</name></clade>

</clade>

<clade length=0.4><name>C</name></clade>

</clade>

</phylogeny>

Note the use of the tag ’clade’ for subtrees and ’phylogeny’ for the entire tree. To preserve more

of the NEXUS format, one could perhaps have used the term ’tree’ instead of ’phylogeny’. The

phylogeny (or tree) tag would presumably be able to hold information on whether the tree is rooted

or unrooted, and the phylogeny could also contain a name tag if the tree is named.

5 Some Simple Tree Algorithms

Reference: Felsenstein Chapter 35: pp. 587-589.

Most algorithms on trees involve repeating the same operation on each node (or branch) of the tree

in turn, either passing from the tips of the tree down to the root or from the root up to the tips.

Biologists often refer to these traversals as the downpass and the uppass sequence, respectively. In

computer science they are known as the postorder (downpass) and preorder (uppass) traversals,

respectively. There is also an inorder traversal but it is rarely used for evolutionary trees.

Algorithm 1 Postorder traversal algorithm
Traverse left descendant of p

Traverse right descendant of p

Carry out f(p) on p

Assume that, for each node p, we want to implement a function f(p). Then the postorder traversal

is easily implemented as a recursive function (Algorithm 1). It is called postorder traversal because

the function is carried out after passing through the subtree rooted at p. The preorder traversal

algorithm is similar (Algorithm 2) but the function is now carried out before passing through the

subtree rooted at p.

Algorithm 2 Preorder traversal algorithm

Carry out f(p) on p

Traverse left descendant of p

Traverse right descendant of p

13

ISC5317-Fall 2007-PB Computational Evolutionary Biology

<clade length=0.23><name>B</name></clade>

</clade>

<clade length=0.4><name>C</name></clade>

</clade>

</phylogeny>

Note the use of the tag ’clade’ for subtrees and ’phylogeny’ for the entire tree. To preserve more

of the NEXUS format, one could perhaps have used the term ’tree’ instead of ’phylogeny’. The

phylogeny (or tree) tag would presumably be able to hold information on whether the tree is rooted

or unrooted, and the phylogeny could also contain a name tag if the tree is named.

5 Some Simple Tree Algorithms

Reference: Felsenstein Chapter 35: pp. 587-589.

Most algorithms on trees involve repeating the same operation on each node (or branch) of the tree

in turn, either passing from the tips of the tree down to the root or from the root up to the tips.

Biologists often refer to these traversals as the downpass and the uppass sequence, respectively. In

computer science they are known as the postorder (downpass) and preorder (uppass) traversals,

respectively. There is also an inorder traversal but it is rarely used for evolutionary trees.

Algorithm 1 Postorder traversal algorithm
Traverse left descendant of p

Traverse right descendant of p

Carry out f(p) on p

Assume that, for each node p, we want to implement a function f(p). Then the postorder traversal

is easily implemented as a recursive function (Algorithm 1). It is called postorder traversal because

the function is carried out after passing through the subtree rooted at p. The preorder traversal

algorithm is similar (Algorithm 2) but the function is now carried out before passing through the

subtree rooted at p.

Algorithm 2 Preorder traversal algorithm

Carry out f(p) on p

Traverse left descendant of p

Traverse right descendant of p

13



PHYLOGENETIC TREES

ISC5317-Fall 2007-PB Computational Evolutionary Biology

Node p = theTree.allDownPass[i];

// Do something with the node p here

}

Note that the downPass[] array is made public here, which is convenient but exposes the array to

users of the tree class. Better encapsulation can be provided, for instance, by using get functions to

access the elements of the downPass[] array. In many algorithms we need to handle only internal

nodes, so it makes good sense to keep postorder arrays of both all the nodes and only the interior

nodes in the tree (including the root).

To print a tree in Newick format, it is convenient to use a recursive algorithm for printing a subtree

rooted at p and call it initially with the root of the tree. If we use the BTM and the convention

described above for storing ordered and unordered binary trees, the algorithm needs to include an

extra branch for the ‘root’ of the tree (Algorithm 3). Note that the algorithm will not print the

semicolon required after the parenthetical description of the tree, so this element will have to be

added.

Algorithm 3 Recursive algorithm for printing a tree (BTM unordered or ordered)

if p is not tip then

Print ‘(’ and left subtree of p

Print ‘,’ and right subtree of p

if p is ‘root’ of unrooted tree then

Print ‘,’ and ancestor subtree of p

end if

Print ‘)’

end if

Print name of p (if any)

Print ‘:’ and branch length of p (if any)

Almost anything you can do in a recursive algorithm can also be done using an ordinary algorithm.

For instance, you can print a BTM unrooted or rooted tree using a non-recursive algorithm if you

add an integer member (let’s call it xp) to each node p and use that to indicate whether the node is

being visited the first, second, or third time; the ‘root’ of an unrooted tree will actually be visited

also a fourth time (Algorithm 4). The algorithm starts with p being the root node (⇢) of the tree.

To construct a binary rooted or unrooted BTM tree from a Newick-format string, you can use a

recursive algorithm for reading a subtree rooted at node p (Algorithm 5). It uses a global index

variable (i), which indicates the position from which we are currently reading the string or array

15


