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1 Counting trees [JF:3; Yang:75]

1.1 Counting rooted trees

Cayley (1857) seems to be the first one to publish tree counting methods and many followed, it

seems that many authors reinvented formulas for counting several times in the biological literature

and the computer science literature. Counting trees might be futile exercise but it will give a good

impression about how many things are contributing to a solution. It is also directly connected to

the exhaustive search method.

Starting with a tree with two tips we easily recognize that there this only possible tree. We can

add a third tip either into the branch from A to the root, into the branch from B to the root, or

below the current root. There are 3 possible rooted bifurcating trees with 3 tips: ((a,b),c), ((a,c),b),

((c,b),a). We just added a node and and an additional branch. A fourth tip can be added at all

4 branches above the root and also 1 below the root, there are 5 possible branches to insert. this

leaves us wit 3× 5 possibilities for a rooted 4-tip tree.(figure 1).

We outlined an algorithm to calculate the total number of possible unrooted trees. We need only

to realize that there are 2n− 3 possible branches were we can insert a new branch. The 2n− 3 we

can get by recognizing that there are n tips and n− 2 interior branches and one root branch. Once

we recognize the series it is even simpler

1× 3× 5× 7...× (2n− 3) (1)

We can express this in a more compact formula

number of rooted trees =
(2n− 3)!

2n−2(n− 2)!
(2)

The number of trees increase rapidly (see Table 3.1 in JF page 24).
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Figure 1: A sample of all different tree shapes with 4 tips, when the trees are labeled, See Figure

3.2 on page 21 of JF

Algorithm 1 Counting rooted trees with n tips

S ← 1

k ← 2

while k ≤ n do

S ← S × (2k − 3)

k ← k + 1

end while

return S

1.2 Counting unrooted trees

Once we recognize that there is nothing special about the root and that any tip can be treated as a

root we can apply the same formula (3) with n− 1 tips. We can also rewrite the formula to reflect

the counting on unrooted trees to

number of unrooted trees =
(2n− 5)!

2n−3(n− 3)!
(3)

1.3 Counting multifurcations

JF:25-28

When we want to count multifurcating trees there arises some ambiguity because the number of

2



ISC 5317-Fall 2007 Computational Evolutionary Biology

nodes depends not only on the number tips, but also on the number of multifurcations in the tree.

To get a count we simple count over all possible multifurcating nodes up to to the n − 1 internal

nodes for a given number of n tips.

1.4 Counting labeled histories

JF:35-36

For most phylogenetic purposes we are not interested in labeled histories, except we can pinpoint

some internal nodes with some fossil data. In population genetics labeled histories have made

Figure 2: Example of different labeled histories

a huge impact as they are used in the framework of the coalescence theory. On rooted labeled

histories we count pairs of nodes:

n(n− 1)

2
× (n− 1)(n− 2)

2
× ....× 2(1)

2
=

n!(n− 1)!

2n−1
(4)

This numbers for labeled histories raise much faster than the rooted and even faster than the

multifurcating trees.

2 Counting tree shapes

Computer scientist or mathematicians are often interested in counting different tree shapes or

unlabeled trees (Figure 3).
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Table 1: Number of trees for 2 to 20 tips

Tips Number of labeled histories Number of rooted trees

2 1 1

3 3 3

4 18 15

5 180 105

6 2700 945

7 56700 10395

8 1587600 135135

9 57153600 2027025

10 2571912000 34459425

11 141455160000 654729075

12 9336040560000 13749310575

13 728211163680000 316234143225

14 66267215894880000 7905853580625

15 6958057668962400000 213458046676875

16 834966920275488000000 6190283353629375

17 113555501157466368000000 191898783962510625

18 17373991677092354304000000 6332659870762850625

19 2970952576782792585984000000 221643095476699771875

20 564480989588730591336960000000 8200794532637891559375

3 Exhaustive search

An exhaustive search simple make sure that we look at every tree for a given number of tips, this

is the same approach as if we would count trees.

Begin not covered in class: In many cases it is not practical to store all the trees before applying

the optimality criterion. A better approach is then to generate one tree, calculate the optimality

score of that tree, generate the next tree, etc. A simple way of accomplishing this is to use a

predefined order of tips and an indexing scheme specifying how the tree should be built. Assume

we have m tips and that they are ordered in some predefined series. Then use m indices ij , each

taking on values from 1 to 2 ∗ j − 5 (the number of branches for an unrooted tree with j − 1 tips).

The value of each index specifies how to construct a particular tree. For instance, the index series

{1,1,1,3,5,7,9,11} would give us the tree resulting from combining the first three tips, then joining
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Figure 3: a sample of all different tree shapes with 4 tips, when the trees are unlabeled, page 31 JF

Algorithm 2 Exhaustive search on unrooted trees (breadth first method)

Tree T3 ← join first 3 tips

for k = 4 to n do

for all trees in Tk−1,· do

for all branches in tree Tk−1,j do

Tk,i ← add tip to branch i in tree Tk−1,j

end for

end for

end for{Now we have collected all trees Tn,·}
for all all trees Tn,. do

ωi ← calculate optimality criterion for Tn,i

end for

sort Tn,· according to ω·

the next tip to branch 3 in that tree, the next tip to branch 5 in the resulting tree, etc. It should

be relatively easy to see that each sequence of numbers designates a unique tree. For this to work,

we need to have a systematic way of numbering the branches we add to a growing tree. A simple

scheme is to use the next two available indices for the two branches being added to the tree. For

instance, when adding tip p to a tree with n branches, we would use the index n+ 1 for the branch

leading to p and the index n+ 2 for the lower part of the interior branch that is bisected when the

tip is added.

Using this indexing scheme, we can exhaustively enumerate the index combinations corresponding

to all possible trees by simply adding one to the index series, as if the indices represented the

digits in a counter where the base was different for each digit. Such a counter algorithm is easy to

formulate (Algorithm 3). Once we have the index combination, the algorithm for constructing the

tree is also straightforward (Algorithm 4).End of not covered in class
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Algorithm 3 Not covered in class:Algorithm for generating tree building index numbers

for all j do

i[j]← 1

end for

while i[3] < 2 do

Do something with the index series

i[n]← i[n] + 1

j ← n

while i[j] > 2 ∗ j − 5 do

i[j] = 1

j ← j − 1

i[j]← i[j] + 1

end while

end while

Algorithm 4 Not covered in class:Algorithm for building a tree from an index series

Construct tree with 3 tips

k ← 4

while k ≤ n do

Set p to tip k

Create new node q

Attach p to q

Attach q underneath node with index i[k]

Set index of p to 2 ∗ k − 4

Set index of q to 2 ∗ k − 3

end while

4 Branch and bound search

This method was developed around 1960 (Computer science , who?) and was described for phylo-

genies by Hendy and Penny (1982). We start with a 3-tip tree (level 1) and add another tip and

evaluate all 3 four-tip trees (T4,.) (level 2) using a optimality criterion, for example parsimony. We

might find that some trees have fewer changes than others. We pick next the tree with the fewest

changes, T4,best in level 2 and add the next tip to it and evaluate the score for these trees on level

3. We move now to the second best tree on level 2 and add a tip and evaluate the scores. If a score

got bigger than the lowest score on level 3 already evaluated, we can stop searching that tree-set

further as all of it will have larger scores.

6



ISC 5317-Fall 2007 Computational Evolutionary Biology

Figure 4: Branch and bound method

5 Heuristic search

There are several ways one can search the space of all possible trees. Only a limited number of

possibilities are shown. We can divide heuristic methods into at least two classes:(1) greedy hill-

climbing methods, (2) methods based on Markov chain Monte Carlo (MCMC) methods. Here will

cover mostly the (1), the MCMC methods gets their fair share later in the course.

5.1 Stepwise addition

This is perhaps the most simple procedure to get to a “reasonably” good tree. One branch is added

at a time and each position is evaluated and the best tree for each round is the base for the next

round of adding another tip. Problematic for this approach is that the order of the taxa that are

added to the tree matters because only a small number of trees are evaluated. This approach is

“greedy” because it will climb to closest optimality peak. It is easy to see that once one has made
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Algorithm 5 ATTEMPT of Branch and bound method on unrooted trees

Generate tree with 3 tips

k ← 4

while k < n do

Generate tree with k tips

Score all k-tip trees, using an optimality criterion, for example parsimony

Pick the tree Tb with the lowest score

Generate trees with k + 1 tips based on this tree Tb

Score all k + 1-tip trees

Remove all the k-tip trees from the list that have lower scores than these k + 1-tip trees.

k ← k + 1

end while

a bad decision one will end on a suboptimal tree (climbing a mole-hill instead of Mount Everest).

Algorithm 6 Stepwise addition

Tree B3 ← join 3 tips for first “best” tree

Optimality criterion ω0 ← 0

for k = 4 to n do

for all branches in tree Tk−1 do

Tk,i ← add tip to branch i in tree Tk−1

ωi ← calculate optimality criterion for Tk,i

if ωi > ωi−1 then

Bk ← Tk,i

else

ωj = ωi−1

end if

end for

end for

return Bn

5.2 Star Decomposition

This is an alternative to the Stepwise addition method. Instead of building up a tree, one is starting

with a star tree with a single multifurcating node and calculates the optimality criterion for all trees

that have two tips joined into a new group. The tree with the best optimality score is used for

the next step, where one tries again to two group two nodes, and so on until the multifurcation is
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Figure 5: Stepwise addition

Figure 6: Star decomposition

resolved.
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5.3 Nearest neighbor interchange

Figure 7: Nearest neighbor interchange

Pick a interior branch and then flip the attached nodes:

• the two branches attached to the nodes on each side of the branch can be flipped.

• the two branches attached to the nodes on each side of the branch, can be joined

5.4 Subtree pruning and regrafting

Algorithm 7 Subtree pruning and regrafting

break T at arbitrary branch into T1 and T2

for all branches in tree T1 do

T1,i ← add “root” of T2

ωi ← calculate optimality criterion for T1,i

if ωi > ωi−1 then

B ← T1,i

else

ωj = ωi−1

end if

end for

return B
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Figure 8: Tree bisection and reconnection

5.5 Tree bisection and reconnection (TBR)

5.6 Disk methods

Arrangements are done on a prescribed local area of the tree. [more to come]

5.7 Other tree rearrangement methods

JF:44

There are several other tree rearrangement possibilities that we have not discussed. some of them

will come in later lectures, for example a variant of the SPR in a population genetic context,

or many different tree rearrangement in Bayesian phylogenetic inference. There are also other

methods, such as the tree fusing method by Goloboff (1999), where one picks two complete trees

and exchanges subtrees. Methods like this might work well in a parallel-computer environment

where many computer-nodes can work on the same tree-problem and exchange subtrees, of course
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one would need to have a methods that makes sure that the there is no duplication or loss of taxa

(tips) on any given tree.
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6 Study questions

1. Describe the differences in counting between rooted and unrooted trees?

2. Unlabeled trees produce much fewer shapes than labeled trees, describe the rate of increase

between the two types.

3. Describe the difference between labeled histories and labeled trees.

4. Why would you want to do an exhaustive search?

5. Write down the algorithm for the Star decomposition method.

6. Write down the algorithm for the TBR method.

7. Why is it important to try several heuristics (for example, not simply using stepwise addition)

to find the best tree. Your answer need to cover more than simply mentioning greedy methods.

8. Can you come up with your own (insert your name here) tree-rearrangment? Algorithm and

pictures?
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