
ACTGTCTATTGAAACCGCTGTTAGAGTAATTATTTTACCGCATATACGAACAGAGTCACCCACCTAATGT
CTGTGCTGTTGCGTTATAATACTGGGCTCCAAGTACGTGTCCGGTCCCCATGTCTGCGCAAGAATTTAAG
GAGCCAGCAGTAAGTACTCCGTCTAGTAAAATTCGGGCATAAGTCGGAGGTTTCAAGTAAACGCCCTATC
ATACATTACAACCCTTTTATTACTACTCGTCAAACAGGTTTGCTTTTTGGTCTGAAATCGAGGCGTCATA
GTTACGCGATATCAGTACCGGTCGTGAGAGGAAGTGAGGCCACGGGGTAAAAACAACAACTGGCCCGTTC
TGGCTCGTGCGAGTTTACTTGTCGCTTCCACACGCGAGCCGATCTCTTGATAACAGACTAAGAGCAGGCG
TAAACATTTTTACTGATTTCAGGCAAACGCCATTCTAATTAGGCGGTTAGGTCTGGTGCCATAGACAACG
CATACGCATAATCTCCTTGGAAAGCTATTTGGACTGTTGGCGTGGAGCATCGGCGGGGTAGAAATAGGGC
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TCTGAAATCGAGGCGTCATAGTTACGCGATATCAGTACCGGTCGTGAGAGGAAGTGAGGCCACGGGGTAA
AAACAACAACTGGCCCGTTCTGGCTCGTGCGAGTTTACTTGTCGCTTCCACACGCGAGCCGATCTCTTGA
TAACAGACTAAGAGCAGGCGTAAACATTTTTACTGATTTCAGGCAAACGCCATTCTAATTAGGCGGTTAG
GTCTGGTGCCATAGACAACGCATACGCATAATCTCCTTGGAAAGCTATTTGGACTGTTGGCGTGGAGTAT
CGGCGGGGTAGAAATAGGGCTCACGGTCTACATTAATGAACTAGTCTTAGCCATACGTGGACGCGGGAGC
GAGAATCCAACGAACACGGATTGCTGAGGCGAAAAGGCTCACCTAGATCGTTATCCGACACTTCAATCTC
TACCTCGGGTCTATTACCATCCCCGCTCCTGCTTTAACAGGACAAGTGCGTTCAATCTCACCCAACTGGA
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CGATATGACAATATTTAAGTCTAAGTGACGGGACGCATTACAACGTATTATAAAATCCATATGTGTCTTC
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adenine guanine

Cytosine Thymine

Purine

Pyrimidine

Figure 1: Building blocks of DNA

redundant, there are potentially 43 triplet combinations (with four nucleotides A=adenine,

C=cytosine, G=guanine, T=thymine [in RNA T is replaced by U=uracile]), but only 20

common aminoacids and 3 STOP codons to mark the end of a coding sequence. We will talk

in more detail about codons in mutation models 2.

2 Point mutations

2.1 A simple model

DNA is built out 4 nucleotides and a model would need to take into account for mutations that

allow to transition from one particular nucleotide to another, in the following section we reduce the

problem to very simple model with two states U and Y but this shows the whole complexity of the

modelling process. If you wish you could think of this as pUrines (either the nucleotide adenosine

[A] or a guanine [G]) or pYrimidines (either cytosine [C] or thymine [T]) (Figure 1). We have the

states and substitution rate µ for the substitution rate from U to Y and the transition rate µ from

Y to U (Figure 2). This is a very simple model. We could think of introducing a di↵erent rate

U Y

μ

μ

Figure 2: Simple model with two states and one mutation rate

for going from Y to U , but will refrain to do so for this outline. We will see later that there are

2
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models that set back-mutation to zero. The most common of these is the infinite sites mutation

model. It will be discussed in chapter mutation models 3.

2.1.1 Discrete time

The model shown in Figure 2 assumes that time is discrete and that we evaluate the transition

from one state in time i to the same or other state in time i + 1, where the allele U is at risk to

mutate to Y with rate µ or to stay in U with rate 1 � µ. The same logic applies to Y where Y

changes to U with rate µ and stays in Y with rate 1�µ. We can express this as a transition matrix

R =

 
1� µ µ

µ 1� µ

!
(1)

often expressed like this

R⇤ =

 
�µ µ

µ �µ

!
(2)

R = I +R⇤ (3)

where I is the Identity matrix. When we start with a specific state, say U , then we can evaluate in

what state we will be in the next time-click. Running this process for many steps creates a Markov

chain, in which the next state is only dependent on the current state and on the transition matrix

that formulates the probabilities of change from U to Y or from Y to U or the probability of no

change.

2.1.2 Stationary distributions

Unspoken assumptions of the above framework are:

• The Markov chain is irreducible: we can reach every state from any other, in our example we

can go from U to Y and from Y to U . If we would set one of the transition rates to 0 then

our framework will have a problem.

• The chain is aperiodic, we never go into a loop that cycles forever only in a subset of solutions.

As long as µ and ⌫ in our sample are not zero we will visit every state.

3
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We do not know m and we substitute it with 
the expected number of nucleotide substitutions  
per site. For example we could assume that the  
mean rate of substitutions is 1.0
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described by Hasegawa et al. (1984, 1985; hereafter called the HKY85 model) is

Q = {q
ij

} =

0

BB@

� ⇡

C

⇡

G

⇡

T

⇡

A

� ⇡

G

⇡

T

⇡

A

⇡

C

� ⇡

T

⇡

A

⇡

C

⇡

G

�

1

CCA µ (1)

This matrix specifies the rate of change from one nucleotide to another; the rows and columns of the matrix
are ordered A, C,G, T , so that the rate of change from C ! G is q

CG

= ⇡

G

. Similarly, the rates of change
between C ! T , G ! A, and T ! C, are q

CT

= ⇡

T

, q

GA

= ⇡

A

, and q

TG

= ⇡

G

, respectively. The
diagonals of the rate matrix, denoted with the dashes, are specified such that each row sums to zero. Finally,
the rate matrix is rescaled such that the mean rate of substitution is one. This can be accomplished by
setting µ = �1/

P
i2{A,C,G,T} ⇡

i

q

ii

. This rescaling of the rate matrix such that the mean rate is one allows
the branch lengths on the phylogenetic tree to be interpreted as expected number of nucleotide substitutions
per site.

We will make a few important points about the rate matrix. First, the rate matrix may have free
parameters. For example, the HKY85 model has the parameters , ⇡

A

, ⇡

C

, ⇡

G

, and ⇡

T

. The parameter
 is the transition/transversion rate bias; when  = 1 transitions occur at the same rate as transversions.
Typically, the transition/transversion rate ratio, estimated using maximum likelihood or Bayesian inference,
is greater than one; transitions occur at a higher rate than transversions. The other parameters—⇡

A

,
⇡

C

, ⇡

G

, and ⇡

T

—are the base frequencies, and have a biological interpretation as the frequency of the
di↵erent nucleotides and are also, incidentally, the stationary probabilities of the process (more on stationary
probabilities later). Second, the rate matrix, Q, can be used to calculate the transition probabilities and the
stationary distribution of the substitution process. The transition probabilities and stationary distribution
play a key role in calculating the likelihood, and we will spend more time here developing an intuitive
understanding of these concepts.

1.1 Transition probabilities

Let us consider a specific example of a rate matrix, with all of the parameters of the model taking specific
values. For example, if we use the HKY85 model and fix the parameters to  = 5, ⇡

A

= 0.4, ⇡

C

= 0.3,
⇡

G

= 0.2, and ⇡

T

= 0.1, we get the following matrix of instantaneous rates

Q = {q
ij

} =

0

BB@

�0.886 0.190 0.633 0.063
0.253 �0.696 0.127 0.316
1.266 0.190 �1.519 0.063
0.253 0.949 0.127 �1.329

1

CCA

Note that these numbers are not special in any particular way. That is to say, they are not based upon any
observations from a real data set, but are rather arbitrarily picked to illustrate a point. The point is that
one can interpret the rate matrix in the physical sense of specifying how changes occur on a phylogenetic
tree. Consider the very simple case of a single branch on a phylogenetic tree. Let’s assume that the branch
is v = 0.5 in length and that the ancestor of the branch is the nucleotide G. The situation we have is
something like that shown in Figure 2A. How can we simulate the evolution of the site starting from the G

at the ancestor? The rate matrix tells us how to do this. First of all, because the current state of the process
is G, the only relevant row of the rate matrix is the third one:

Q = {q
ij

} =

0

BB@

· · · ·
· · · ·

1.266 0.190 �1.519 0.063
· · · ·

1

CCA

The overall rate of change away from nucleotide G is q

GA

+ q

GC

+ q

GT

= 1.266 + 0.190 + 0.063 = 1.519.
Equivalently, the rate of change away from nucleotide G is simply �q

GG

= 1.519. In a continuous-time
Markov model, the waiting time between substitutions is exponentially distributed. The exact shape of the
exponential distribution is determined by its rate, which is the same as the rate of the corresponding process

2
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probabilities later). Second, the rate matrix, Q, can be used to calculate the transition probabilities and the
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something like that shown in Figure 2A. How can we simulate the evolution of the site starting from the G
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is G, the only relevant row of the rate matrix is the third one:
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The overall rate of change away from nucleotide G is q

GA

+ q

GC
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Focusing on G

v = 0.5

A B C

Figure 2: Simulation under the HKY85 substitution process. A single realization of the substitution
process under the HKY85 model when  = 5, ⇡

A

= 0.4, ⇡

C

= 0.3, ⇡

G

= 0.2, and ⇡

T

= 0.1. The length of
the branch is v = 0.5 and the starting nucleotide is G (light gray). A, The process starts in nucleotide G. B,
The first change is 0.152 units up the branch. C, the change is from G to A (dark gray). The time at which
the next change occurs exceeds the total branch length, so the process ends in state C.

in the Q matrix. For instance, if we are in state G, we wait an exponentially distributed amount of time
with rate 1.519 until the next substitution occurs. One can easily construct exponential random variables
from uniform random variables using the equation

t = � 1
�

log
e

(u)

where � is the rate and u is a uniform(0,1) random number. For example, my calculator has a uniform(0,1)
random number generator. The first number it generated is u = 0.794. This means that the next time at
which a substitution occurs is 0.152 up from the root of the tree (using � = 1.519; Figure 2B). The rate
matrix also specifies the probabilities of a change from G to the nucleotides A, C, and T . These probabilities
are

G! A : 1.266
1.519 = 0.833, G! C : 0.190

1.519 = 0.125, G! T : 0.063
1.519 = 0.042

To determine what nucleotide the process changes to we would generate another uniform(0,1) random number
(again called u). If u is between 0 and 0.833, we will say that we had a change from G to A. If the random
number is between 0.833 and 0.958 we will say that we had a change from G to C. Finally, if the random
number u is between 0.958 and 1.000, we will say we had a change from G to T . The next number generated
on our calculator was u = 0.102, which means the change was from G to A. The process is now in a di↵erent
state (the nucleotide A) and the relevant row of the rate matrix is

Q = {q
ij

} =

0

BB@

�0.886 0.190 0.633 0.063
· · · ·
· · · ·
· · · ·

1

CCA

We wait an exponentially distributed amount of time with parameter � = 0.886 until the next substitution
occurs. When the substitution occurs, it is to a C, G, or T with probabilities 0.190

0.886 = 0.214, 0.633
0.886 = 0.714,

and 0.063
0.886 = 0.072, respectively. This process of generating random and exponentially distributed times until

the next substitution occurs and then determining (randomly) what nucleotide the change is to is repeated
until the process exceeds the length of the branch. The state the process is in when it passes the end of
the branch is recorded. In the example of Figure 2, the process started in state G and ended in state A.
(The next uniform random variable generated on our calculator was u = 0.371, which means that the next
substitution would occur 1.119 units above the substitution from G ! A. The process is in the state A

when it passed the end of the branch.) The only non-random part of the entire procedure was the initial
decision to start the process in state G. All other aspects of the simulation used a uniform random number
generator and our knowledge of the rate matrix to simulate a single realization of the HKY85 process of
DNA substitution.
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v = 0.5

A B C

Figure 2: Simulation under the HKY85 substitution process. A single realization of the substitution
process under the HKY85 model when  = 5, ⇡

A

= 0.4, ⇡

C

= 0.3, ⇡

G

= 0.2, and ⇡

T

= 0.1. The length of
the branch is v = 0.5 and the starting nucleotide is G (light gray). A, The process starts in nucleotide G. B,
The first change is 0.152 units up the branch. C, the change is from G to A (dark gray). The time at which
the next change occurs exceeds the total branch length, so the process ends in state C.

in the Q matrix. For instance, if we are in state G, we wait an exponentially distributed amount of time
with rate 1.519 until the next substitution occurs. One can easily construct exponential random variables
from uniform random variables using the equation

t = � 1
�

log
e

(u)

where � is the rate and u is a uniform(0,1) random number. For example, my calculator has a uniform(0,1)
random number generator. The first number it generated is u = 0.794. This means that the next time at
which a substitution occurs is 0.152 up from the root of the tree (using � = 1.519; Figure 2B). The rate
matrix also specifies the probabilities of a change from G to the nucleotides A, C, and T . These probabilities
are

G! A : 1.266
1.519 = 0.833, G! C : 0.190

1.519 = 0.125, G! T : 0.063
1.519 = 0.042

To determine what nucleotide the process changes to we would generate another uniform(0,1) random number
(again called u). If u is between 0 and 0.833, we will say that we had a change from G to A. If the random
number is between 0.833 and 0.958 we will say that we had a change from G to C. Finally, if the random
number u is between 0.958 and 1.000, we will say we had a change from G to T . The next number generated
on our calculator was u = 0.102, which means the change was from G to A. The process is now in a di↵erent
state (the nucleotide A) and the relevant row of the rate matrix is

Q = {q
ij

} =

0

BB@

�0.886 0.190 0.633 0.063
· · · ·
· · · ·
· · · ·

1

CCA

We wait an exponentially distributed amount of time with parameter � = 0.886 until the next substitution
occurs. When the substitution occurs, it is to a C, G, or T with probabilities 0.190

0.886 = 0.214, 0.633
0.886 = 0.714,

and 0.063
0.886 = 0.072, respectively. This process of generating random and exponentially distributed times until

the next substitution occurs and then determining (randomly) what nucleotide the change is to is repeated
until the process exceeds the length of the branch. The state the process is in when it passes the end of
the branch is recorded. In the example of Figure 2, the process started in state G and ended in state A.
(The next uniform random variable generated on our calculator was u = 0.371, which means that the next
substitution would occur 1.119 units above the substitution from G ! A. The process is in the state A

when it passed the end of the branch.) The only non-random part of the entire procedure was the initial
decision to start the process in state G. All other aspects of the simulation used a uniform random number
generator and our knowledge of the rate matrix to simulate a single realization of the HKY85 process of
DNA substitution.
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where � is the rate and u is a uniform(0,1) random number. For example, my calculator has a uniform(0,1)
random number generator. The first number it generated is u = 0.794. This means that the next time at
which a substitution occurs is 0.152 up from the root of the tree (using � = 1.519; Figure 2B). The rate
matrix also specifies the probabilities of a change from G to the nucleotides A, C, and T . These probabilities
are

G! A : 1.266
1.519 = 0.833, G! C : 0.190

1.519 = 0.125, G! T : 0.063
1.519 = 0.042

To determine what nucleotide the process changes to we would generate another uniform(0,1) random number
(again called u). If u is between 0 and 0.833, we will say that we had a change from G to A. If the random
number is between 0.833 and 0.958 we will say that we had a change from G to C. Finally, if the random
number u is between 0.958 and 1.000, we will say we had a change from G to T . The next number generated
on our calculator was u = 0.102, which means the change was from G to A. The process is now in a di↵erent
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We wait an exponentially distributed amount of time with parameter � = 0.886 until the next substitution
occurs. When the substitution occurs, it is to a C, G, or T with probabilities 0.190

0.886 = 0.214, 0.633
0.886 = 0.714,

and 0.063
0.886 = 0.072, respectively. This process of generating random and exponentially distributed times until

the next substitution occurs and then determining (randomly) what nucleotide the change is to is repeated
until the process exceeds the length of the branch. The state the process is in when it passes the end of
the branch is recorded. In the example of Figure 2, the process started in state G and ended in state A.
(The next uniform random variable generated on our calculator was u = 0.371, which means that the next
substitution would occur 1.119 units above the substitution from G ! A. The process is in the state A

when it passed the end of the branch.) The only non-random part of the entire procedure was the initial
decision to start the process in state G. All other aspects of the simulation used a uniform random number
generator and our knowledge of the rate matrix to simulate a single realization of the HKY85 process of
DNA substitution.
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where � is the rate and u is a uniform(0,1) random number. For example, my calculator has a uniform(0,1)
random number generator. The first number it generated is u = 0.794. This means that the next time at
which a substitution occurs is 0.152 up from the root of the tree (using � = 1.519; Figure 2B). The rate
matrix also specifies the probabilities of a change from G to the nucleotides A, C, and T . These probabilities
are

G! A : 1.266
1.519 = 0.833, G! C : 0.190

1.519 = 0.125, G! T : 0.063
1.519 = 0.042

To determine what nucleotide the process changes to we would generate another uniform(0,1) random number
(again called u). If u is between 0 and 0.833, we will say that we had a change from G to A. If the random
number is between 0.833 and 0.958 we will say that we had a change from G to C. Finally, if the random
number u is between 0.958 and 1.000, we will say we had a change from G to T . The next number generated
on our calculator was u = 0.102, which means the change was from G to A. The process is now in a di↵erent
state (the nucleotide A) and the relevant row of the rate matrix is
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We wait an exponentially distributed amount of time with parameter � = 0.886 until the next substitution
occurs. When the substitution occurs, it is to a C, G, or T with probabilities 0.190

0.886 = 0.214, 0.633
0.886 = 0.714,

and 0.063
0.886 = 0.072, respectively. This process of generating random and exponentially distributed times until

the next substitution occurs and then determining (randomly) what nucleotide the change is to is repeated
until the process exceeds the length of the branch. The state the process is in when it passes the end of
the branch is recorded. In the example of Figure 2, the process started in state G and ended in state A.
(The next uniform random variable generated on our calculator was u = 0.371, which means that the next
substitution would occur 1.119 units above the substitution from G ! A. The process is in the state A

when it passed the end of the branch.) The only non-random part of the entire procedure was the initial
decision to start the process in state G. All other aspects of the simulation used a uniform random number
generator and our knowledge of the rate matrix to simulate a single realization of the HKY85 process of
DNA substitution.
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with rate 1.519 until the next substitution occurs. One can easily construct exponential random variables
from uniform random variables using the equation
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where � is the rate and u is a uniform(0,1) random number. For example, my calculator has a uniform(0,1)
random number generator. The first number it generated is u = 0.794. This means that the next time at
which a substitution occurs is 0.152 up from the root of the tree (using � = 1.519; Figure 2B). The rate
matrix also specifies the probabilities of a change from G to the nucleotides A, C, and T . These probabilities
are

G! A : 1.266
1.519 = 0.833, G! C : 0.190

1.519 = 0.125, G! T : 0.063
1.519 = 0.042

To determine what nucleotide the process changes to we would generate another uniform(0,1) random number
(again called u). If u is between 0 and 0.833, we will say that we had a change from G to A. If the random
number is between 0.833 and 0.958 we will say that we had a change from G to C. Finally, if the random
number u is between 0.958 and 1.000, we will say we had a change from G to T . The next number generated
on our calculator was u = 0.102, which means the change was from G to A. The process is now in a di↵erent
state (the nucleotide A) and the relevant row of the rate matrix is
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We wait an exponentially distributed amount of time with parameter � = 0.886 until the next substitution
occurs. When the substitution occurs, it is to a C, G, or T with probabilities 0.190

0.886 = 0.214, 0.633
0.886 = 0.714,

and 0.063
0.886 = 0.072, respectively. This process of generating random and exponentially distributed times until

the next substitution occurs and then determining (randomly) what nucleotide the change is to is repeated
until the process exceeds the length of the branch. The state the process is in when it passes the end of
the branch is recorded. In the example of Figure 2, the process started in state G and ended in state A.
(The next uniform random variable generated on our calculator was u = 0.371, which means that the next
substitution would occur 1.119 units above the substitution from G ! A. The process is in the state A

when it passed the end of the branch.) The only non-random part of the entire procedure was the initial
decision to start the process in state G. All other aspects of the simulation used a uniform random number
generator and our knowledge of the rate matrix to simulate a single realization of the HKY85 process of
DNA substitution.
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This Monte Carlo procedure for simulating the HKY85 process of DNA substitution can be repeated.
The following table summarizes the results of 100 simulations, each of which started with the nucleotide G:

Starting Ending Number of
Nucleotide Nucleotide Replicates

G A 27
G C 10
G G 59
G T 4

This table can be interpreted as a Monte Carlo approximation of the transition probabilities from nucleotide G

to nucleotide i 2 (A, C,G, T ). Specifically, the Monte Carlo approximations are p

GA

(0.5) ⇡ 0.27, p

GC

(0.5) ⇡
0.10, p

GG

(0.5) ⇡ 0.59, and p

GT

(0.5) ⇡ 0.04. These approximate probabilities are all conditioned on the
starting nucleotide being G and the branch length being v = 0.5. We performed additional simulations
in which the starting nucleotide was A, C, or T . Together with the earlier Monte Carlo simulation that
started with the nucleotide G, these additional simulations allow us to fill out the following table with the
approximate transition probabilities:

Ending
Nucleotide

A C G T
A 0.67 0.13 0.20 0.00

Starting C 0.13 0.70 0.07 0.10
Nucleotide G 0.27 0.10 0.59 0.04

T 0.12 0.30 0.08 0.50

Clearly, these numbers are only crude approximations to the true transition probabilities; after all, each
row in the table is based on only 100 Monte Carlo simulations. However, they do illustrate the meaning
of the transition probabilities; the transition probability, p

ij

(v), is the probability that the substitution
process ends in nucleotide j conditioned on it starting in nucleotide i after an evolutionary amount of time
v. The table of approximate transition probabilities, above, can be interpreted as a matrix of probabilities,
usually denoted P(v). Fortunately, we do not need to rely on Monte Carlo simulation to approximate
the transition probability matrix. Instead, we can calculate the transition probability matrix exactly using
matrix exponentiation:

P(v) = e

Qv

For the case we have been simulating, the exact transition probabilities (to four decimal places) are

P(0.5) = {p
ij

(0.5)} =

0

BB@

0.7079 0.0813 0.1835 0.0271
0.1085 0.7377 0.0542 0.0995
0.3670 0.0813 0.5244 0.0271
0.1085 0.2985 0.0542 0.5387

1

CCA

The transition probability matrix accounts for all the possible ways the process could end up in nucleotide
j after starting in nucleotide i. In fact, each of the infinite possibilities is weighted by its probability under
the substitution model.

1.1.1 Stationary distribution

The transition probabilities provide the probability of ending in a particular nucleotide after some specific
amount of time (or opportunity for substitution, v). These transition probabilities are conditioned on starting
in a particular nucleotide. What do the transition probability matrices look like as v increases? The following
transition probability matrices show the e↵ect of increasing branch length:

P(0.00) =

0

BB@

1.000 0.000 0.000 0.000
0.000 1.000 0.000 0.000
0.000 0.000 1.000 0.000
0.000 0.000 0.000 1.000

1

CCA P(0.01) =

0

BB@

0.991 0.002 0.006 0.001
0.003 0.993 0.001 0.003
0.013 0.002 0.985 0.001
0.003 0.009 0.001 0.987

1

CCA
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GA
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GC
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0.10, p

GG
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GT

(0.5) ⇡ 0.04. These approximate probabilities are all conditioned on the
starting nucleotide being G and the branch length being v = 0.5. We performed additional simulations
in which the starting nucleotide was A, C, or T . Together with the earlier Monte Carlo simulation that
started with the nucleotide G, these additional simulations allow us to fill out the following table with the
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j after starting in nucleotide i. In fact, each of the infinite possibilities is weighted by its probability under
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Stationary Distribution

This Monte Carlo procedure for simulating the HKY85 process of DNA substitution can be repeated.
The following table summarizes the results of 100 simulations, each of which started with the nucleotide G:
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(0.5) ⇡
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(0.5) ⇡ 0.59, and p

GT

(0.5) ⇡ 0.04. These approximate probabilities are all conditioned on the
starting nucleotide being G and the branch length being v = 0.5. We performed additional simulations
in which the starting nucleotide was A, C, or T . Together with the earlier Monte Carlo simulation that
started with the nucleotide G, these additional simulations allow us to fill out the following table with the
approximate transition probabilities:

Ending
Nucleotide

A C G T
A 0.67 0.13 0.20 0.00

Starting C 0.13 0.70 0.07 0.10
Nucleotide G 0.27 0.10 0.59 0.04

T 0.12 0.30 0.08 0.50

Clearly, these numbers are only crude approximations to the true transition probabilities; after all, each
row in the table is based on only 100 Monte Carlo simulations. However, they do illustrate the meaning
of the transition probabilities; the transition probability, p
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(v), is the probability that the substitution
process ends in nucleotide j conditioned on it starting in nucleotide i after an evolutionary amount of time
v. The table of approximate transition probabilities, above, can be interpreted as a matrix of probabilities,
usually denoted P(v). Fortunately, we do not need to rely on Monte Carlo simulation to approximate
the transition probability matrix. Instead, we can calculate the transition probability matrix exactly using
matrix exponentiation:

P(v) = e

Qv

For the case we have been simulating, the exact transition probabilities (to four decimal places) are
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0.7079 0.0813 0.1835 0.0271
0.1085 0.7377 0.0542 0.0995
0.3670 0.0813 0.5244 0.0271
0.1085 0.2985 0.0542 0.5387
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The transition probability matrix accounts for all the possible ways the process could end up in nucleotide
j after starting in nucleotide i. In fact, each of the infinite possibilities is weighted by its probability under
the substitution model.

1.1.1 Stationary distribution

The transition probabilities provide the probability of ending in a particular nucleotide after some specific
amount of time (or opportunity for substitution, v). These transition probabilities are conditioned on starting
in a particular nucleotide. What do the transition probability matrices look like as v increases? The following
transition probability matrices show the e↵ect of increasing branch length:

P(0.00) =

0

BB@

1.000 0.000 0.000 0.000
0.000 1.000 0.000 0.000
0.000 0.000 1.000 0.000
0.000 0.000 0.000 1.000

1

CCA P(0.01) =

0

BB@

0.991 0.002 0.006 0.001
0.003 0.993 0.001 0.003
0.013 0.002 0.985 0.001
0.003 0.009 0.001 0.987

1

CCA
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P(0.10) =

0

BB@

0.919 0.018 0.056 0.006
0.024 0.934 0.012 0.029
0.113 0.018 0.863 0.006
0.025 0.086 0.012 0.877

1

CCA P(0.50) =

0

BB@

0.708 0.081 0.184 0.027
0.106 0.738 0.054 0.100
0.367 0.081 0.524 0.027
0.109 0.299 0.054 0.539

1

CCA

P(1.00) =

0

BB@

0.580 0.141 0.232 0.047
0.188 0.587 0.094 0.131
0.464 0.141 0.348 0.047
0.188 0.394 0.094 0.324

1

CCA P(5.00) =

0

BB@

0.411 0.287 0.206 0.096
0.383 0.319 0.192 0.106
0.411 0.287 0.206 0.096
0.383 0.319 0.192 0.107

1

CCA

P(10.0) =

0

BB@

0.401 0.299 0.200 0.099
0.399 0.301 0.199 0.100
0.401 0.299 0.200 0.099
0.399 0.301 0.199 0.100

1

CCA P(100) =

0

BB@

0.400 0.300 0.200 0.100
0.400 0.300 0.200 0.100
0.400 0.300 0.200 0.100
0.400 0.300 0.200 0.100

1

CCA

(Each matrix was calculated under the HKY85 model with  = 5, ⇡

A

= 0.4, ⇡

C

= 0.3, ⇡

G

= 0.2, and
⇡

T

= 0.1.) Note that as the length of a branch, v, increases, the probability of ending up in a particular
nucleotide converges to a single number, regardless of the starting state. For example, the probability of
ending up in C is about 0.300 when the branch length is v = 100. This is true regardless of whether the
process starts in A, C, G, or T . The substitution process has in a sense ‘forgotten’ its starting state.

The stationary distribution is the probability of observing a particular state when the branch length
increases without limit (v !1). The stationary probabilities of the four nucleotides are ⇡

A

= 0.4, ⇡

C

= 0.3,
⇡

G

= 0.2, and ⇡

T

= 0.1 for the example discussed above. The models typically used in phylogenetic analyses
have the stationary probabilities built into the rate matrix, Q. You will notice that the rate matrix for
the HKY85 model has parameters ⇡

A

, ⇡

C

, ⇡

G

, and ⇡

T

, and that the stationary frequencies of the four
nucleotides for our example match the input values for our simulations. Building the stationary frequency
of the process into the rate matrix, while somewhat unusual, makes calculating the likelihood function
easier. For one, specifying the stationary distribution saves the time of figuring out what the stationary
distribution is (which involves solving the equation ⇡Q = 0, which simply says that, if we start with the
nucleotide frequencies reflecting the stationary distribution, the process will have no e↵ect on the nucleotide
frequencies). For another, it allows one to more easily specify a time reversible substitution model. [A time
reversible substitution model has the property that ⇡

i

q

ij

= ⇡

j

q

ji

for all i, j 2 (A, C,G, T ), i 6= j.] Practically
speaking, time reversibility means that we can work with unrooted trees instead of rooted trees (assuming
that the molecular clock is not enforced).

1.1.2 Calculating the likelihood

The transition probabilities and stationary distribution are used when calculating the likelihood. For exam-
ple, consider the following alignment of sequences for five species1:

Species 1 TAACTGTAAAGGACAACACTAGCAGGCCAGACGCACACGCACAGCGCACC

Species 2 TGACTTTAAAGGACGACCCTACCAGGGCGGACACAAACGGACAGCGCAGC

Species 3 CAAGTTTAGAAAACGGCACCAACACAACAGACGTATGCAACTGACGCACC

Species 4 CGAGTTCAGAAGACGGCACCAACACAGCGGACGTATGCAGACGACGCACC

Species 5 TGCCCTTAGGAGGCGGCACTAACACCGCGGACGAGTGCGGACAACGTACC

This is clearly a rather small alignment of sequences to use for estimating phylogeny, but it will illustrate
how likelihoods are calculated. The likelihood is the probability of the alignment of sequences, conditioned
on a tree with branch lengths. The basic procedure is to calculate the probability of each site (column)
in the matrix. Assuming that the substitutions are independent across sites, the probability of the entire
alignment is simply the product of the probabilities of the individual sites.

How is the likelihood at a single site calculated? Figure 3 shows the observations at the first site (T , T ,
C, C, and T ) at the tips of one of the possible phylogenetic trees for five species. The tree in Figure 3 is
unusual in that we will assume that the nucleotide states at the interior nodes of the tree are also known.

1This alignment was simulated on the tree of Figure 3 under the HKY85 model of DNA substitution. Parameter values for
the simulation can be found in the caption of Table 1.
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Stationary Distribution

This Monte Carlo procedure for simulating the HKY85 process of DNA substitution can be repeated.
The following table summarizes the results of 100 simulations, each of which started with the nucleotide G:

Starting Ending Number of
Nucleotide Nucleotide Replicates
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G G 59
G T 4

This table can be interpreted as a Monte Carlo approximation of the transition probabilities from nucleotide G

to nucleotide i 2 (A, C,G, T ). Specifically, the Monte Carlo approximations are p

GA

(0.5) ⇡ 0.27, p

GC

(0.5) ⇡
0.10, p

GG

(0.5) ⇡ 0.59, and p

GT

(0.5) ⇡ 0.04. These approximate probabilities are all conditioned on the
starting nucleotide being G and the branch length being v = 0.5. We performed additional simulations
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started with the nucleotide G, these additional simulations allow us to fill out the following table with the
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Ending
Nucleotide

A C G T
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of the transition probabilities; the transition probability, p

ij

(v), is the probability that the substitution
process ends in nucleotide j conditioned on it starting in nucleotide i after an evolutionary amount of time
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usually denoted P(v). Fortunately, we do not need to rely on Monte Carlo simulation to approximate
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P(v) = e

Qv

For the case we have been simulating, the exact transition probabilities (to four decimal places) are

P(0.5) = {p
ij

(0.5)} =

0

BB@

0.7079 0.0813 0.1835 0.0271
0.1085 0.7377 0.0542 0.0995
0.3670 0.0813 0.5244 0.0271
0.1085 0.2985 0.0542 0.5387

1

CCA

The transition probability matrix accounts for all the possible ways the process could end up in nucleotide
j after starting in nucleotide i. In fact, each of the infinite possibilities is weighted by its probability under
the substitution model.
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P(0.00) =

0

BB@

1.000 0.000 0.000 0.000
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1

CCA P(0.01) =

0

BB@

0.991 0.002 0.006 0.001
0.003 0.993 0.001 0.003
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1

CCA
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P(0.10) =

0

BB@
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1

CCA P(0.50) =

0

BB@
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0.367 0.081 0.524 0.027
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1

CCA

P(1.00) =

0

BB@
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1

CCA P(5.00) =

0

BB@
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1

CCA

P(10.0) =

0

BB@
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1

CCA P(100) =

0

BB@
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0.400 0.300 0.200 0.100

1

CCA

(Each matrix was calculated under the HKY85 model with  = 5, ⇡

A

= 0.4, ⇡

C

= 0.3, ⇡

G
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⇡

T
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nucleotide converges to a single number, regardless of the starting state. For example, the probability of
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, and ⇡
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nucleotides for our example match the input values for our simulations. Building the stationary frequency
of the process into the rate matrix, while somewhat unusual, makes calculating the likelihood function
easier. For one, specifying the stationary distribution saves the time of figuring out what the stationary
distribution is (which involves solving the equation ⇡Q = 0, which simply says that, if we start with the
nucleotide frequencies reflecting the stationary distribution, the process will have no e↵ect on the nucleotide
frequencies). For another, it allows one to more easily specify a time reversible substitution model. [A time
reversible substitution model has the property that ⇡

i

q

ij

= ⇡
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for all i, j 2 (A, C,G, T ), i 6= j.] Practically
speaking, time reversibility means that we can work with unrooted trees instead of rooted trees (assuming
that the molecular clock is not enforced).

1.1.2 Calculating the likelihood

The transition probabilities and stationary distribution are used when calculating the likelihood. For exam-
ple, consider the following alignment of sequences for five species1:

Species 1 TAACTGTAAAGGACAACACTAGCAGGCCAGACGCACACGCACAGCGCACC

Species 2 TGACTTTAAAGGACGACCCTACCAGGGCGGACACAAACGGACAGCGCAGC

Species 3 CAAGTTTAGAAAACGGCACCAACACAACAGACGTATGCAACTGACGCACC

Species 4 CGAGTTCAGAAGACGGCACCAACACAGCGGACGTATGCAGACGACGCACC

Species 5 TGCCCTTAGGAGGCGGCACTAACACCGCGGACGAGTGCGGACAACGTACC

This is clearly a rather small alignment of sequences to use for estimating phylogeny, but it will illustrate
how likelihoods are calculated. The likelihood is the probability of the alignment of sequences, conditioned
on a tree with branch lengths. The basic procedure is to calculate the probability of each site (column)
in the matrix. Assuming that the substitutions are independent across sites, the probability of the entire
alignment is simply the product of the probabilities of the individual sites.

How is the likelihood at a single site calculated? Figure 3 shows the observations at the first site (T , T ,
C, C, and T ) at the tips of one of the possible phylogenetic trees for five species. The tree in Figure 3 is
unusual in that we will assume that the nucleotide states at the interior nodes of the tree are also known.

1This alignment was simulated on the tree of Figure 3 under the HKY85 model of DNA substitution. Parameter values for
the simulation can be found in the caption of Table 1.
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Simulating data 
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Figure 4: The model tree for the simulations. We simulate data on this tree. The branch lengths are
denoted v

i

.

In this section, we will test our knowledge obtained in the previous section by simulating DNA sequences
on a phylogenetic tree. Simulation is often used in phylogenetics. Simulation has been used to elucidate the
statistical properties of di↵erent phylogenetic methods, and it can be used to generate the null distribution
of a test statistic in phylogenetic hypothesis testing. In other words, learning to simulate DNA sequences is
not a wasted e↵ort. Not only can you strengthen your intuition of phylogenetic methods, but you may also
be able to apply simulation for your own research.

How exactly should one simulate evolution on a phylogeneitc tree? One basic point is that an alignment
should be simulated on a site-by-site basis. That is, we first simulate the data at the first site, then the second
site, and so on. We can take this approach because of the assumption of independence of the substitution
process across sites; to simulate the data at a particular site (column in the alignment), we don’t need to
know the results of the simulation at any other site.

Another basic point is that we must know all of the parameters of the simulation: we have to decide
on the precise phylogenetic tree on which to simulate the DNA sequences; we need to know the branch
lengths on this tree; and, finally, we must pick a substitution model. The substitution model is a matrix
of rates, specifying the rate of change from one nucleotide to another. In other words, we are taking a
God-like view of the situation. We know everything about the evolutionary history and process. Of course,
in reality we never know everything about how organisms evolved, but must make strong assumptions about
how evolution occurred in order to estimate (make educated guesses) at the underlying evolutionary history.
However, pretending to be a God, even for a little while, is a great feeling.

In the following, we will evolve DNA sequences on the four-taxon tree shown in Figure 4. We will also
assume that DNA substitution occurs according to the HKY85 model with the parameters fixed to the
following values:  = 5, ⇡

A

= 0.4, ⇡

C

= 0.3, ⇡

G

= 0.2, and ⇡

T

= 0.1. The rate matrix, then, is

Q = {q
ij

} =

0

BB@

�0.886 0.190 0.633 0.063
0.253 �0.696 0.127 0.316
1.266 0.190 �1.519 0.063
0.253 0.949 0.127 �1.329

1

CCA

Now, we are ready to simulate data on the tree of Figure 4. We will go over four di↵erent methods for
simulating data, each of which takes advantage of our knowledge of continuous-time Markov chains.

2.1 Method 1

The first method only relies on our ability to generate exponentially distributed random numbers. If we
generate a uniform random number on the interval (0,1), we can generate an exponential random number
(with parameters �) using the transformation t = � 1

�

log
e

(u) (where u is the uniform random number and
t is the exponentially distributed random number). The first method involves an addition to the tree of
Figure 4 which seems unusual: We take the tree of Figure 4, and add a ‘tail’ to it—a branch that extends
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of rates, specifying the rate of change from one nucleotide to another. In other words, we are taking a
God-like view of the situation. We know everything about the evolutionary history and process. Of course,
in reality we never know everything about how organisms evolved, but must make strong assumptions about
how evolution occurred in order to estimate (make educated guesses) at the underlying evolutionary history.
However, pretending to be a God, even for a little while, is a great feeling.
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Now, we are ready to simulate data on the tree of Figure 4. We will go over four di↵erent methods for
simulating data, each of which takes advantage of our knowledge of continuous-time Markov chains.
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The first method only relies on our ability to generate exponentially distributed random numbers. If we
generate a uniform random number on the interval (0,1), we can generate an exponential random number
(with parameters �) using the transformation t = � 1
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t is the exponentially distributed random number). The first method involves an addition to the tree of
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Four methods to simulate data

1. we use our exponential random number generator, and add a tail to the tree and start 
with an A 

2. No long tail, but pick root state from base frequencies 

3. We have only three different branch length, we calculate the probability matrix and use 

that to generate the nucleotides at the nodes 

4. We generate all site patterns and then pick among them (this will be discussed when we 

know about likelihood.
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In this section, we will test our knowledge obtained in the previous section by simulating DNA sequences
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generate a uniform random number on the interval (0,1), we can generate an exponential random number
(with parameters �) using the transformation t = � 1

�

log
e

(u) (where u is the uniform random number and
t is the exponentially distributed random number). The first method involves an addition to the tree of
Figure 4 which seems unusual: We take the tree of Figure 4, and add a ‘tail’ to it—a branch that extends

8

v1 = 0.3 v5 = 0.1

v2 = 0.1 v3 = 0.1

v4 = 0.2

v6 = 0.1

v0 = 10.0

A

Figure 5: The model tree for the simulations, with a tail. The tree of Figure 4, with a long branch
at the root that starts in nucleotide A.

for some distance from the root of the tree. In this case, the branch at the root of the tree is v0 = 10.0 in
length. Moreover, we assume that the process is in state (nucleotide) A at the very root of the tree. The
situation we have is like that shown in Figure 5.

We simulate the process starting at the root of the tree. The process is in state A, meaning that the only
relevant row of the rate matrix is the first one:

Q = {q
ij

} =

0

BB@

�0.886 0.190 0.633 0.063
· · · ·
· · · ·
· · · ·

1

CCA

We wait an exponentially distributed amount of time with parameter � = 0.886 until the next substitution
occurs. When the substitution occurs, it is to a C, G, or T with probabilities 0.190

0.886 = 0.214, 0.633
0.886 = 0.714,

and 0.063
0.886 = 0.072, respectively. In the first section, we used this method for simulating along a single branch

of a tree. Here we apply the method with vigor, applying it to each branch in the tree from the root to
the tips. We continue to simulate up the root branch of the tree until our simulation exceeds the length of
the branch. We then record the nucleotide state the process was in when it exceeded a length of 10. We
write this state at the end of the root branch, where it splits into branches 1 and 6. We then repeat the
simulation process for branch 1 and then branch 6, recording the state the process is in at the end of those
two branches. We then concentrate our attention on branches 4 and 5, and then on branches 2 and 3. At
the end, we should have nucleotides at the ends of branches 1, 2, 3, and 4.

One puzzling aspect of this simulation is why we always start the process in nucleotide A, and why we
even bothered to add the tail to the root of the tree. We did this because for Method 1, we only are going to
allow ourselves to generate exponential random numbers. If this is the case, we can use our understanding
of the rate matrix as specifying waiting times between substitutions to complete our simulation. However,
we are not allowing ourselves knowledge of the stationary distribution of the substitution process. Hence,
we always start our simulations in a particular nucleotide (in this case we chose to start in the nucleotide A),
and then simulate the process for a long time along the root (tail) branch of the tree. The hope is that if we
make the length of the tail branch long enough, that the process is at stationarity by the time it reaches the
first split in the tree (the speciation event that eventually produces the four species at the tips of the tree).

Method 1 relies on the idea that we can come pretty near to stationarity with a moderately long branch.
We know that the stationary distribution of the HKY85 process of nucleotide substitution with the specific
parameters we chose is ⇡

A

= 0.4, ⇡

C

= 0.3, ⇡

G

= 0.2, ⇡

T

= 0.1. We also know that the transition probability

9

Exercise: generate at least two sites at the tips

described by Hasegawa et al. (1984, 1985; hereafter called the HKY85 model) is

Q = {q
ij

} =

0

BB@

� ⇡

C

⇡

G

⇡

T

⇡

A

� ⇡

G

⇡

T

⇡

A

⇡

C

� ⇡

T

⇡

A

⇡

C

⇡

G

�

1

CCA µ (1)

This matrix specifies the rate of change from one nucleotide to another; the rows and columns of the matrix
are ordered A, C,G, T , so that the rate of change from C ! G is q

CG

= ⇡

G

. Similarly, the rates of change
between C ! T , G ! A, and T ! C, are q

CT

= ⇡

T

, q

GA

= ⇡

A

, and q

TG

= ⇡

G

, respectively. The
diagonals of the rate matrix, denoted with the dashes, are specified such that each row sums to zero. Finally,
the rate matrix is rescaled such that the mean rate of substitution is one. This can be accomplished by
setting µ = �1/

P
i2{A,C,G,T} ⇡

i

q

ii

. This rescaling of the rate matrix such that the mean rate is one allows
the branch lengths on the phylogenetic tree to be interpreted as expected number of nucleotide substitutions
per site.

We will make a few important points about the rate matrix. First, the rate matrix may have free
parameters. For example, the HKY85 model has the parameters , ⇡

A

, ⇡

C

, ⇡

G

, and ⇡

T

. The parameter
 is the transition/transversion rate bias; when  = 1 transitions occur at the same rate as transversions.
Typically, the transition/transversion rate ratio, estimated using maximum likelihood or Bayesian inference,
is greater than one; transitions occur at a higher rate than transversions. The other parameters—⇡

A

,
⇡

C

, ⇡

G

, and ⇡

T

—are the base frequencies, and have a biological interpretation as the frequency of the
di↵erent nucleotides and are also, incidentally, the stationary probabilities of the process (more on stationary
probabilities later). Second, the rate matrix, Q, can be used to calculate the transition probabilities and the
stationary distribution of the substitution process. The transition probabilities and stationary distribution
play a key role in calculating the likelihood, and we will spend more time here developing an intuitive
understanding of these concepts.

1.1 Transition probabilities

Let us consider a specific example of a rate matrix, with all of the parameters of the model taking specific
values. For example, if we use the HKY85 model and fix the parameters to  = 5, ⇡

A

= 0.4, ⇡

C

= 0.3,
⇡

G

= 0.2, and ⇡

T

= 0.1, we get the following matrix of instantaneous rates

Q = {q
ij

} =

0

BB@

�0.886 0.190 0.633 0.063
0.253 �0.696 0.127 0.316
1.266 0.190 �1.519 0.063
0.253 0.949 0.127 �1.329

1

CCA

Note that these numbers are not special in any particular way. That is to say, they are not based upon any
observations from a real data set, but are rather arbitrarily picked to illustrate a point. The point is that
one can interpret the rate matrix in the physical sense of specifying how changes occur on a phylogenetic
tree. Consider the very simple case of a single branch on a phylogenetic tree. Let’s assume that the branch
is v = 0.5 in length and that the ancestor of the branch is the nucleotide G. The situation we have is
something like that shown in Figure 2A. How can we simulate the evolution of the site starting from the G

at the ancestor? The rate matrix tells us how to do this. First of all, because the current state of the process
is G, the only relevant row of the rate matrix is the third one:

Q = {q
ij

} =

0

BB@

· · · ·
· · · ·

1.266 0.190 �1.519 0.063
· · · ·

1

CCA

The overall rate of change away from nucleotide G is q

GA

+ q

GC

+ q

GT

= 1.266 + 0.190 + 0.063 = 1.519.
Equivalently, the rate of change away from nucleotide G is simply �q

GG

= 1.519. In a continuous-time
Markov model, the waiting time between substitutions is exponentially distributed. The exact shape of the
exponential distribution is determined by its rate, which is the same as the rate of the corresponding process
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We draw a time using an exponential 

v = 0.5

A B C

Figure 2: Simulation under the HKY85 substitution process. A single realization of the substitution
process under the HKY85 model when  = 5, ⇡

A

= 0.4, ⇡

C

= 0.3, ⇡

G

= 0.2, and ⇡

T

= 0.1. The length of
the branch is v = 0.5 and the starting nucleotide is G (light gray). A, The process starts in nucleotide G. B,
The first change is 0.152 units up the branch. C, the change is from G to A (dark gray). The time at which
the next change occurs exceeds the total branch length, so the process ends in state C.

in the Q matrix. For instance, if we are in state G, we wait an exponentially distributed amount of time
with rate 1.519 until the next substitution occurs. One can easily construct exponential random variables
from uniform random variables using the equation

t = � 1
�

log
e

(u)

where � is the rate and u is a uniform(0,1) random number. For example, my calculator has a uniform(0,1)
random number generator. The first number it generated is u = 0.794. This means that the next time at
which a substitution occurs is 0.152 up from the root of the tree (using � = 1.519; Figure 2B). The rate
matrix also specifies the probabilities of a change from G to the nucleotides A, C, and T . These probabilities
are

G! A : 1.266
1.519 = 0.833, G! C : 0.190

1.519 = 0.125, G! T : 0.063
1.519 = 0.042

To determine what nucleotide the process changes to we would generate another uniform(0,1) random number
(again called u). If u is between 0 and 0.833, we will say that we had a change from G to A. If the random
number is between 0.833 and 0.958 we will say that we had a change from G to C. Finally, if the random
number u is between 0.958 and 1.000, we will say we had a change from G to T . The next number generated
on our calculator was u = 0.102, which means the change was from G to A. The process is now in a di↵erent
state (the nucleotide A) and the relevant row of the rate matrix is

Q = {q
ij

} =

0

BB@

�0.886 0.190 0.633 0.063
· · · ·
· · · ·
· · · ·

1

CCA

We wait an exponentially distributed amount of time with parameter � = 0.886 until the next substitution
occurs. When the substitution occurs, it is to a C, G, or T with probabilities 0.190

0.886 = 0.214, 0.633
0.886 = 0.714,

and 0.063
0.886 = 0.072, respectively. This process of generating random and exponentially distributed times until

the next substitution occurs and then determining (randomly) what nucleotide the change is to is repeated
until the process exceeds the length of the branch. The state the process is in when it passes the end of
the branch is recorded. In the example of Figure 2, the process started in state G and ended in state A.
(The next uniform random variable generated on our calculator was u = 0.371, which means that the next
substitution would occur 1.119 units above the substitution from G ! A. The process is in the state A

when it passed the end of the branch.) The only non-random part of the entire procedure was the initial
decision to start the process in state G. All other aspects of the simulation used a uniform random number
generator and our knowledge of the rate matrix to simulate a single realization of the HKY85 process of
DNA substitution.
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the next change occurs exceeds the total branch length, so the process ends in state C.
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where � is the rate and u is a uniform(0,1) random number. For example, my calculator has a uniform(0,1)
random number generator. The first number it generated is u = 0.794. This means that the next time at
which a substitution occurs is 0.152 up from the root of the tree (using � = 1.519; Figure 2B). The rate
matrix also specifies the probabilities of a change from G to the nucleotides A, C, and T . These probabilities
are

G! A : 1.266
1.519 = 0.833, G! C : 0.190

1.519 = 0.125, G! T : 0.063
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To determine what nucleotide the process changes to we would generate another uniform(0,1) random number
(again called u). If u is between 0 and 0.833, we will say that we had a change from G to A. If the random
number is between 0.833 and 0.958 we will say that we had a change from G to C. Finally, if the random
number u is between 0.958 and 1.000, we will say we had a change from G to T . The next number generated
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We wait an exponentially distributed amount of time with parameter � = 0.886 until the next substitution
occurs. When the substitution occurs, it is to a C, G, or T with probabilities 0.190

0.886 = 0.214, 0.633
0.886 = 0.714,

and 0.063
0.886 = 0.072, respectively. This process of generating random and exponentially distributed times until

the next substitution occurs and then determining (randomly) what nucleotide the change is to is repeated
until the process exceeds the length of the branch. The state the process is in when it passes the end of
the branch is recorded. In the example of Figure 2, the process started in state G and ended in state A.
(The next uniform random variable generated on our calculator was u = 0.371, which means that the next
substitution would occur 1.119 units above the substitution from G ! A. The process is in the state A

when it passed the end of the branch.) The only non-random part of the entire procedure was the initial
decision to start the process in state G. All other aspects of the simulation used a uniform random number
generator and our knowledge of the rate matrix to simulate a single realization of the HKY85 process of
DNA substitution.
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for a branch of v = 10.0 is

P(10.0) =

0

BB@

0.401 0.299 0.200 0.099
0.399 0.301 0.199 0.100
0.401 0.299 0.200 0.099
0.399 0.301 0.199 0.100

1

CCA

The transition probability matrix tells us that if we start in nucleotide A, then we end up in state A, C, G,
and T with probabilities 0.401, 0.299, 0.200, and 0.099, respectively. These numbers are very close to the
actual stationary probabilities, so perhaps this method is not such a bad one.

2.2 Method 2

The second simulation method we explore is similar to the first one, but we eliminate the long tail on the
tree. Instead of simulating the process along a long branch before we reach the first split in the tree, we
simply decide which nucleotide is at the first split by sampling from the stationary distribution. We know
that the stationary probabilities of the process are ⇡

A

= 0.4, ⇡

C

= 0.3, ⇡

G

= 0.2, ⇡

T

= 0.1, so why not
simply pick a nucleotide at random with these probabilities?

2.3 Method 3

The third simulation method does away with the need to generate exponential random variables. It takes
advantage of our knowledge of the stationary distribution (as does the second method), but also takes
advantage of our ability to calculate transition probabilities. There are only three di↵erent lengths of
branches on our model tree (0.1, 0.2, and 0.3). The transition probabilities are

P(0.10) =

0

BB@

0.919 0.018 0.056 0.006
0.024 0.934 0.012 0.029
0.113 0.018 0.863 0.006
0.025 0.086 0.012 0.877

1

CCA P(0.20) =

0

BB@

0.851 0.035 0.100 0.011
0.047 0.876 0.023 0.052
0.201 0.035 0.750 0.011
0.047 0.156 0.023 0.771

1

CCA

P(0.30) =

0

BB@

0.795 0.051 0.135 0.017
0.069 0.824 0.034 0.071
0.270 0.051 0.659 0.017
0.069 0.214 0.034 0.681

1

CCA

Instead of drawing exponential random variables, and generating the process continuously across the entire
tree, our simulation jumps from node to node on the tree. First, we generate the nucleotide at the root of
the tree (the first split leading to all four taxa) by drawing from the stationary distribution. Then, we use
the transition probabilities to simulate from one end to the other of each branch on the tree. We start from
the root of the tree, and simulate up the tree to progressively higher branches until we have simulated a
nucleotide at each tip of the tree.

2.4 Method 4

The last method we will discuss involves calculating the probability of each possible pattern of nucleotides
that we could observe at the tips of the tree. There are four tips, so there are 44 = 256 possible patterns
of nucleotides we could observe. We use the formula for the likelihood, discussed in the first section, to
calculate the probability (likelihood) of each pattern.

We could quickly simulate the data at one site (column) in an alignment by generating one uniform
random number on the interval (0,1). We would first decide which pattern would result from a particular
random number by tabulating 256 intervals. For example, we might decide that if the uniform random
number is between 0 and 0.199465, that the pattern AAAA is the result; that if the uniform random number is
between 0.199465 and 0.20365 that the pattern AAAC results; that if the uniform random number is between
0.20365 and 0.218361 that the pattern AAAG results; and so on. These intervals are calculated directly from
the numbers in Table 2. (If you do not see how this was done, here is a hint: 0.199465 + 0.004185 = 0.20365
and 0.199465 + 0.004185 + 0.014711 = 0.218361.)
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Algorithm to simulate data on a tree

Required: a tree with branch lengths and a mutation transition rate matrix

v1 = 0.3 v5 = 0.1

v2 = 0.1 v3 = 0.1

v4 = 0.2

v6 = 0.1

Figure 4: The model tree for the simulations. We simulate data on this tree. The branch lengths are
denoted v

i

.

In this section, we will test our knowledge obtained in the previous section by simulating DNA sequences
on a phylogenetic tree. Simulation is often used in phylogenetics. Simulation has been used to elucidate the
statistical properties of di↵erent phylogenetic methods, and it can be used to generate the null distribution
of a test statistic in phylogenetic hypothesis testing. In other words, learning to simulate DNA sequences is
not a wasted e↵ort. Not only can you strengthen your intuition of phylogenetic methods, but you may also
be able to apply simulation for your own research.

How exactly should one simulate evolution on a phylogeneitc tree? One basic point is that an alignment
should be simulated on a site-by-site basis. That is, we first simulate the data at the first site, then the second
site, and so on. We can take this approach because of the assumption of independence of the substitution
process across sites; to simulate the data at a particular site (column in the alignment), we don’t need to
know the results of the simulation at any other site.

Another basic point is that we must know all of the parameters of the simulation: we have to decide
on the precise phylogenetic tree on which to simulate the DNA sequences; we need to know the branch
lengths on this tree; and, finally, we must pick a substitution model. The substitution model is a matrix
of rates, specifying the rate of change from one nucleotide to another. In other words, we are taking a
God-like view of the situation. We know everything about the evolutionary history and process. Of course,
in reality we never know everything about how organisms evolved, but must make strong assumptions about
how evolution occurred in order to estimate (make educated guesses) at the underlying evolutionary history.
However, pretending to be a God, even for a little while, is a great feeling.

In the following, we will evolve DNA sequences on the four-taxon tree shown in Figure 4. We will also
assume that DNA substitution occurs according to the HKY85 model with the parameters fixed to the
following values:  = 5, ⇡

A

= 0.4, ⇡

C

= 0.3, ⇡

G

= 0.2, and ⇡

T

= 0.1. The rate matrix, then, is

Q = {q
ij

} =

0

BB@

�0.886 0.190 0.633 0.063
0.253 �0.696 0.127 0.316
1.266 0.190 �1.519 0.063
0.253 0.949 0.127 �1.329

1

CCA

Now, we are ready to simulate data on the tree of Figure 4. We will go over four di↵erent methods for
simulating data, each of which takes advantage of our knowledge of continuous-time Markov chains.

2.1 Method 1

The first method only relies on our ability to generate exponentially distributed random numbers. If we
generate a uniform random number on the interval (0,1), we can generate an exponential random number
(with parameters �) using the transformation t = � 1

�

log
e

(u) (where u is the uniform random number and
t is the exponentially distributed random number). The first method involves an addition to the tree of
Figure 4 which seems unusual: We take the tree of Figure 4, and add a ‘tail’ to it—a branch that extends
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v1 = 0.3 v5 = 0.1

v2 = 0.1 v3 = 0.1

v4 = 0.2

v6 = 0.1

v0 = 10.0

A

Figure 5: The model tree for the simulations, with a tail. The tree of Figure 4, with a long branch
at the root that starts in nucleotide A.

for some distance from the root of the tree. In this case, the branch at the root of the tree is v0 = 10.0 in
length. Moreover, we assume that the process is in state (nucleotide) A at the very root of the tree. The
situation we have is like that shown in Figure 5.

We simulate the process starting at the root of the tree. The process is in state A, meaning that the only
relevant row of the rate matrix is the first one:

Q = {q
ij

} =

0

BB@

�0.886 0.190 0.633 0.063
· · · ·
· · · ·
· · · ·

1

CCA

We wait an exponentially distributed amount of time with parameter � = 0.886 until the next substitution
occurs. When the substitution occurs, it is to a C, G, or T with probabilities 0.190

0.886 = 0.214, 0.633
0.886 = 0.714,

and 0.063
0.886 = 0.072, respectively. In the first section, we used this method for simulating along a single branch

of a tree. Here we apply the method with vigor, applying it to each branch in the tree from the root to
the tips. We continue to simulate up the root branch of the tree until our simulation exceeds the length of
the branch. We then record the nucleotide state the process was in when it exceeded a length of 10. We
write this state at the end of the root branch, where it splits into branches 1 and 6. We then repeat the
simulation process for branch 1 and then branch 6, recording the state the process is in at the end of those
two branches. We then concentrate our attention on branches 4 and 5, and then on branches 2 and 3. At
the end, we should have nucleotides at the ends of branches 1, 2, 3, and 4.

One puzzling aspect of this simulation is why we always start the process in nucleotide A, and why we
even bothered to add the tail to the root of the tree. We did this because for Method 1, we only are going to
allow ourselves to generate exponential random numbers. If this is the case, we can use our understanding
of the rate matrix as specifying waiting times between substitutions to complete our simulation. However,
we are not allowing ourselves knowledge of the stationary distribution of the substitution process. Hence,
we always start our simulations in a particular nucleotide (in this case we chose to start in the nucleotide A),
and then simulate the process for a long time along the root (tail) branch of the tree. The hope is that if we
make the length of the tail branch long enough, that the process is at stationarity by the time it reaches the
first split in the tree (the speciation event that eventually produces the four species at the tips of the tree).

Method 1 relies on the idea that we can come pretty near to stationarity with a moderately long branch.
We know that the stationary distribution of the HKY85 process of nucleotide substitution with the specific
parameters we chose is ⇡

A

= 0.4, ⇡

C

= 0.3, ⇡

G

= 0.2, ⇡

T

= 0.1. We also know that the transition probability
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2.3.5 Summary of nucleotide models

Using this simplified Q matrix we express all models

Q =

0

BBBBB@

�(a⇡C + b⇡G + c⇡T ) a⇡C b⇡G c⇡T

a⇡A �(a⇡A + d⇡G + e⇡T ) d⇡G e⇡T

b⇡A d⇡C �(b⇡A + d⇡C + f⇡T ) f⇡T

c⇡A e⇡C f⇡G �(c⇡A + e⇡C + f⇡G)

1

CCCCCA

(27)

GTR

TN

F81

JC

HKY
F84

K2P

+Transition/Transversion

+uneqal base freq.

+uneqal base freq.

+Transition/Transversion

+Purine/Pyrimidins

+all rates are different
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