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1 Introduction

The last few decades has seen a growing interest in Bayesian inference, an alternative approach

to statistical inference. There are many similarities between maximum likelihood and Bayesian

inference but also important differences. Both methods use the same stochastic models of molecular

evolution but the underlying inference principles are different, as we will explore in this lecture.

2 A probability exercise

It may be helpful to start with a simple exercise in probability theory. Assume we have 100 balls.

The balls are either white or black and either small or large. Thus, there are four kinds of balls:

(1) white and small; (2) white and large; (3) black and small; and (4) black and large. There are

10 balls of the first type, 15 of the second, 50 of the third and 25 of the fourth (Table 1).

Table 1: A collection of balls

Color Small Large Total

White 10 15 25

Black 50 25 75

Total 60 40 100

Now, let us calculate the joint probability of a ball picked randomly from this set being small

and white, P (small,white). If the probabilities of being small or large and white or black had
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been independent, we could have calculated the joint probability simply as the product of the

probabilities of each of the two events, that is

P (small,white) = P (small)P (white)

Clearly, this is not the case for our collection of balls. An alternative approach we can use then, is

to obtain the desired probability as the product of the probability of the ball being small times the

probability of it being white given that it is small. In equation form we could write

P (white, small) = P (small)P (white|small)

If we plugged numbers into the equation, we would get P (white, small) = P (small)P (white|small) =

(60/100)(10/60) = 10/100.

The joint probability of the ball being small and white can also be calculated by multiplying the

probability of the ball being white with the probability of it being small given that it is white. This

equation would be

P (white, small) = P (white)P (small|white)

Plugging numbers into the equation, we would get P (white, small) = P (white)P (small|white) =

(25/100)(10/25) = 10/100, the same result as obtained previously.

Since both methods give the same joint probability, we can equate them, in which case we get

P (small)P (white|small) = P (white)P (small|white)

After moving one factor over to the right side of the equation, we get

P (white|small) =
P (white)P (small|white)

P (small)

Replacing white and small with two general events labeled A and B, we get the general probability

statement

P (A|B) =
P (A)P (B|A)

P (B)

3 Bayes’ theorem

The simple probability statement derived above is known as Bayes’ rule or Bayes’ theorem. When

it is used in statistical inference, it is applied to data, D, and a set of parameter values θ of the
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model that generated the data. We can then write Bayes’ theorem as

P (θ|D) =
P (θ)P (D|θ)

P (D)

Each of the probabilities in this equation has a name. The probability on the left is called the

posterior probability of the parameter values given the data. The first probability in the numerator

is the prior probability of the parameter values, while the second is easily recognized as the likelihood,

or more formally, the probability of the data given the observations. Finally, the probability in

the denominator is known as the model likelihood ; it is the total probability of the data given

the model (the conditioning on a model is implicit in all of the probabilities). We can view the

latter probability simply as a normalizing constant, with the task of ensuring that the posterior

probability is a true probability distribution, that is, that it integrates (or sums) to 1 over parameter

space. Because of the normalizing function of the denominator, it is common to see Bayes’ theorem

expressed as

P (θ|D) ∝ P (θ)P (D|θ)

that is, the posterior probability is proportional to the prior probability times the likelihood.

Looking closer at the denominator of Bayes’ theorem, P (D), it is clear that it is the sum or integral

of the posterior probabilities over all possible values of θ, that is

P (D) =

∫
θ
P (θ)P (D|θ) dθ

4 Bayesian inference

How is Bayes’ theorem used in Bayesian inference? As usual, we are considering a model with

some parameters that are free to vary. The Bayesian approach forces us to first formulate some

prior beliefs about the value of these parameters before seeing the data. These beliefs should take

the form of a probability distribution on the parameters, P (θ). Once we have formulated our prior

beliefs, we use the likelihood of the observed data to update the prior probability distribution to

a posterior probability distribution specifying what we should believe about the parameters after

seeing the data.

The posterior probability distribution essentially represents the end result of a Bayesian analysis;

it is possible to summarize it in terms such as the mode (the parameter value with the maximum

posterior probability) the mean or the 95 % credibility interval (note that Bayesian statisticians use

the term credibility interval for an interval that is superficially similar to the confidence interval
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used in maximum likelihood inference) (Fig. 1). It is important to recognize these commonly

used indicators as imperfect summaries of the posterior probability distribution. Unlike maximum

likelihood analysis, the aim of a Bayesian analysis is not to provide so-called point estimates of the

model parameters; the result of the analysis is the posterior probability distribution itself.

Figure 1: Some common summaries used for posterior probability distribution. They work well for

simple posteriors (a) but can be misleading for more complex posteriors such as bimodal distribu-

tions (b).

Further differences between maximum likelihood and Bayesian inference are evident when analyzing

multi-parameter models. Recall that the maximum likelihood approach distinguished between

structural and nuisance parameters in multi-parameter models. There is no such difference in

Bayesian analysis. The result of a Bayesian analysis is a joint probability distribution on all

parameters in the model. If we are interested in one particular parameter, we would calculate

the marginal probability distribution for that parameter by integrating (or summing) out all other

parameters in the model. Assume for instance that we were interested in the parameter θi and that

θ−i is used to denote all other parameters in the model. Then we would calculate the marginal

probability distribution

P (θi|D) =

∫
θ−i

P (θ|D) dθ−i

There is nothing that stops us from calculating several of these marginal distributions, one at a time,

if we were interested in more than one parameter in the model. A common way of describing the
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Bayesian approach is to say that we integrate out the uncertainty concerning all other parameters

when we are trying to draw inferences about a parameter of interest.

Note that the marginal distribution for a parameter in the model, the distribution of interest

in Bayesian inference, is identical up to a normalizing constant to the integrated likelihood that

would result if we were to integrate out all parameters in the likelihood function except the one

we focused on. It follows that the maximum posterior probability estimate is the same as the

maximum likelihood estimate when a pure integrated likelihood approach is used. Note, however,

the reluctance of Bayesians to focus on a point estimate such as the maximum posterior probability

value, which represents the mode in the marginal posterior probability distribution.

Bayesian inference shares many of the properties of maximum likelihood inference. For instance,

Bayesian inference provides consistent and efficient parameter estimates under general conditions

similar to those for likelihood inference given suitably chosen priors. In fact, the consistent use of

integration instead of maximization over parameters that are not of interest can result in Bayesian

inference being more robust than maximum likelihood.

5 An example of Bayesian inference

Coin tossing demonstrates several aspects of Bayesian inference well. Assume that we want to

estimate the probability p of obtaining heads with a particular coin. We throw it 11 times and get

five heads and six tails.

Using the binomial probability model, we can now either use maximum likelihood or Bayesian

inference to estimate p. As we saw previously, the maximum likelihood estimate of p is p̂ = 5/11 =

0.45. This estimate is not necessarily the best estimate of p given all of the knowledge we have.

For instance, if we were to bet over the true value of p, and given that there is nothing special

about the coin, most people would bet their money on a value closer to 0.5 than to 0.45. This

is because we use background knowledge; most coins are likely to have p values very close to 0.5

and the outcome of 11 throws simply is not enough to change that prior expectation considerably.

When it is important to estimate the value of some unknown, and it is always important when

money is involved, we tend to abandon maximum likelihood estimates and reason like Bayesians.

We can think of the Bayesian approach as combining a prior probability distribution with the

likelihood function (Fig. 2). In the simplest case, our prior would put equal probability on all

possible values of p, that is, our prior would be a uniform distribution on the interval (0, 1). This
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would result in a posterior distribution that is simply a scaled variant of the likelihood function.

However, a more realistic prior would put more probability on values of p close to 0.5. A suitable

probability distribution to use in this case for formulating the prior would be the beta distribution.

For instance, a Beta(10, 10) distribution would be equivalent to incorporating information from

about 20 (actually 18) previous coin tosses, half of which were heads. If we combine this prior

with the likelihood function resulting from the binomial probability model on 5 heads and 6 tails,

we would get a posterior that would be a Beta(15, 16) distribution. Note how the parameters of

the beta simply reflect the total number of heads and tails that we are basing the posterior on

(actually the number of heads plus one and the number of tails plus one). If we used an even

more informative prior, such as a Beta(100, 100) distribution, the posterior would become more

influenced, dominated, by the prior.

Figure 2: Coin tossing in a Bayesian context. By combining a given data set with different prior

probability distributions, we get different posteriors (a-c). However, as we collect more and more

data, the posteriors are influenced more and more by the likelihood and the influence of the prior

gradually decreases (d-i)

As we increase the number of observations (throws of a particular coin) for a fixed prior, the more

influenced the posterior will be by the likelihood. Eventually, the posterior will be determined

entirely by the likelihood. For instance, if 10,000 throws still indicated that the coin had a heads

probability of 0.45, then the posterior would spike on that value even for a Beta(100, 100) prior
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distribution that put a lot of probability on fair coins (p = 0.5).

6 Accumulating scientific knowledge

One of the most attractive aspects of Bayesian theory is that it provides a rational and consistent

framework for accumulating scientific knowledge. According to the Bayesian view, knowledge is

accumulated by successively updating probability distributions to take new data into account. In

fact, we can show that a successive series of Bayesian updates based on stepwise accumulation of

evidence is mathematically equivalent to a single update based on all the evidence. Assume that

we start with an initial prior P (θ) and an initial set of observations D1. The posterior probability

distribution after this step would be:

P (θ|D1) =
P (θ)P (D1|θ)

P (D1)

If we use this posterior probability distribution as the prior in the next step, where we take a second

set of observations D2 into account, we get:

P (θ|D2, D1) =
P (θ|D1)P (D2|θ)

P (D2)

=
P (θ)P (D1|θ)P (D2|θ)

P (D1)P (D2)

=
P (θ)P (D1, D2|θ)

P (D1, D2)

The last rearrangement can be made because D1 and D2 are independent sets of observations.

Note that the last equation is the same as applying Bayes’ theorem directly on the collected set

of observations, D1 +D2. In other words, there is a rational procedure for accumulating scientific

knowledge in the Bayesian framework and the end result is the same regardless of the order or

exact way in which the data are added as long as the posterior probability distribution obtained in

one analysis is used as the prior in the next analysis. In maximum likelihood analyses, background

knowledge is typically ignored.

7 Specifying priors

In Bayesian texts, you often see different terms used to describe important properties of priors.

Prior probability distributions are typically proper probability distributions but sometimes it is
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possible to use improper priors that do not integrate to a bounded value. For instance, a uniform

distribution on the interval (−∞,∞) would be a typical example of an improper prior. Sometimes,

it is possible to get away with improper priors because the likelihood function dies off quickly

enough to make the posterior proper. However, it is safer to avoid improper priors.

In Bayesian texts that discuss analytical calculation of posteriors, you often find discussions of

conjugate priors. Conjugate priors are those that, for some specified probability model, result in

the posterior being a distribution of the same form as the prior. For instance, the beta distribution

is a conjugate prior for the binomial probability model because the beta times the binomial is a beta

distribution. In most cases, the posteriors are estimated numerically and then it is less important

to be able to identify conjugate priors.

Many scientists find it difficult to specify proper priors. This can be because there is a lack of

background information or because there are difficulties in summarizing the background information

in terms of a proper probability distribution. In these cases, there is often a desire to formulate

a “flat” or “noninformative” prior. In many cases, there is a natural probability distribution that

can be used for this purpose. In the coin-tossing example, for instance, assuming a uniform prior

probability distribution on the value of p is a natural uninformative or vague prior.

There is an entire school of objective Bayesians arguing that Bayesian inference should always be

based on noninformative priors. It turns out to be difficult to define exactly what a noninformative

prior is. The most successful attempt is that of Jeffreys, known as Jeffreys’ prior. Jeffreys attempted

to find a prior that would make the posterior insensitive to parametrization of the problem. This

can be achieved by setting P (θ) ∝ J [(θ)]1/2, where J(θ) is the Fisher information for θ:

J(θ) = −E
[

d2 lnP (D|θ)
dθ2

∣∣∣∣ θ]

In other words, the idea is to find a prior distribution where the probability depends on the curvature

(second derivative) of the expected value of the likelihood function. The Jeffreys prior is easy to

apply to single-parameter models. It can be extended to multiparameter models as well but the

results are controversial.

8 Calculating the posterior

Although Bayes’ theorem was formulated already in the 18th century, Bayesian inference has been

little used until relatively recently. The main reason for this is the difficulty in calculating the pos-
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terior analytically. It was not until computers and good numerical methods for approximating the

posterior became available that the method took off. Most important among the numerical tech-

niques for estimating the posterior is the Markov chain Monte Carlo technique, known as MCMC.

The idea is to construct a Markov chain with the stationary distribution equal to the posterior dis-

tribution of interest. This chain is then started at an arbitrarily chosen point in parameter space

and run until it reaches stationarity, at which time samples of the posterior probability distribution

can be collected. The next two lectures will describe the MCMC technique in detail, especially as

it is used in Bayesian inference.

8.1 Study Questions

1. Describe the different probabilities in Bayes’ rule

2. What are the most important differences between maximum likelihood inference and Bayesian

inference?

3. What is a conjugate prior?

4. What is a noninformative prior? How can it be defined?

5. How is knowledge accumulated in the Bayesian approach?
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