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Coalescence theory as a tool for population genetics

cosaelesce | koo'les

verb [ intrans. |

come together and form one mass or whole : the puddles had
coalesced 1nto shallow streams | the separate details coalesce to
Jorm a single body of scientific thought.
e | trans. | combine (elements) in a mass or whole : to felp
coalesce the communaty, they established an office.

DERIVATIVES

co-a-les.cence |-1lesans| noun

co-a.les.cent |-lesont| adjective

ORIGIN mid 16th cent. (in the sense [bring together, unite] ):
from Latin coalescere, from co- (from cum ‘with’) +
alescere ‘grow up’ (from alere ‘nourish’).




lessonae

Pelophylax
bergeri

cypriensis

cretensis

caralitanus

cerigiensis
bedriagae2
epeiroticus
ridbundus
bedriagae
Cilicia
perezi

saharicus

0.0050




lessonae

Pelophylax
bergeri

cypriensis
cretensis
caralitanus
cerigiensis
bedriagae2
epeiroticus
ridibundus
bedriagae
Cilicia
perezi

saharicus

0.0050



epeiroticus

rd5

rd8
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epeiroticus

‘ Little resolution

rid4
‘ Tree building method should take into
account that lineages are not independent |
of each other. ridd
rd8
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Wright-Fisher population model

‘ All individuals live one generation and get replaced by their offspring

‘ All have same chance to reproduce, all are equally fit

‘ The number of individuals in the population is constant
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Sewall Wright evaluated the probability that two randomly chosen
iIndividuals in generation ¢ have a common ancestor in

generation t — 1. If we assume that there are 2N chromosomes

then the probability of sharing a common ancestor in the last generation is
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Sewall Wright evaluated the probability that two randomly chosen R

individuals in generation ¢ have a common ancestor in

generation ¢t — 1. If we assume that there are 2N chromosomes

then the probability of sharing a common ancestor in last generation is
1

N S T

The probability that two randomly picked chromosome do not have a common
ancestor is

| 1
2N
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It we know the genealogy of the two individuals then we can
calculate the probability as

o= (-3 (35

where 7 is the number of generations with no coalescence.
This formula is the Geometric Distribution and we can calculate
the expectation of the waiting time until two random individuals

coalesce:
E(r) =2N
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0.25

0.20

0.15

0.10

0.05

20

10000 random draw from a population with size
2N = 20 leads to this distribution of times
until two randomly chosen individuals have a
common ancestor. The observed mean waiting
time of 2N=20.34

50 100
generations



For the time of coalescence in a sample of TWO , we will wait on average
2N generations assuming it is a Wright-Fisher population

‘ The model assumes that the generations are discrete and non-overlapping

‘ Real populations do not necessarily behave like a Wright-Fisher (the ‘ideal’
population)

‘ We assume that calculation using Wright-Fisher populations can be
extrapolated to real populations.



Wright-Fisher Canning Moran
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O oftspring ~= 1 Toftspring = & Tofispring = 3N
E(r) = 2N E(r) = 2N /x E(r) = 2(2N)?
generation time g = 1 g=1 g=2N

You can generate graphs like this using the python program popsim
(check out my faculty page for the link) 29 of 103 — ©2017 Peter Beeri


















Sir J. F. C. Kingman described in 1982 the n-coalecent. He
showed the behavior of a sample of size n, and its probability
structure looking backwards in time.

General findings:

coalescence rate = (

n n(n—1)
2 2

Once a coalescence happened n is reduced to n — 1 because
two lineages merged into one. He then imposed a continuous

approximation of the Canning’s exchangeable model to get
results.









Time




Time




Second analogy bugs-in-a-box

Time: 0 ‘

k: 100

Press H for the help menu
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Looking backward in time, the first
coalescence between two random
individuals is the result of a waiting
process that depends on the sample n and
the total population size V.
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Imposing a time scale we can approximate
the process with a exponential distribution:



Looking backward in time, the first
coalescence between two random
individuals is the result of a waiting
process that depends on the sample n and
the total population size V.

Using Kingman’s coalescence rate and
Imposing a time scale we can approximate
the process with an exponential distribution:

P(u;|N) = e " )

with the scaled coalescence rate
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(others do not coalesce)



with the scaled coalescence rate
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Looking backward in time, the first
coalescence between two random
individuals is the result of a waiting
process that depends on the sample n and
the total population size V.

Using Kingman’s coalescence rate and
Imposing a time scale we can approximate
the process with a exponential distribution:

P(u;|N) = e " )

1

k(k—1)  k(k—1)

9N~ 2(2N) ~ 4N



We are now able to calculate the probabillity
of a whole relationship tree (Genealogy
(). We assume that each coalescence is
iIndependent from any other:

P(G|N)
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We are now able to calculate the probabillity
of a whole relationship tree (Genealogy
(). We assume that each coalescence is
iIndependent from any other:

P(G|N) =
X P(ul\N, ig, 24)
X

X P(ug|N, 71 ,2,1345)




We are now able to calculate the probabillity
of a whole relationship tree (Genealogy
(). We assume that each coalescence is
iIndependent from any other:

P(G|N) — P(UO|N,i1,i2)
X P(u1 N, i3,i4)
X P(U3 N, 7;374,2.5)

X P(u4|N,i1.2,%3.4.5)

I ki(ki—1) 9
PGIN) = [ e 15




E(mrca) = Sum of the expectation of each time interval = Z k

2 1 1 2
lim E(ryrca) =2N+=-N+-N+_-N+ —N+..=4N

k— o0

Each interval u,; is independent of
the others, the expected length of
the interval is the inverse of the
coalescent rate. Thus we can
sum these expectations to get to
expectation of the depth of the
genealogy.

T 4N

j(k; — 1)

7=0

15 k— o0

lim U(TMRCA) = 4N



If we know the genealogy G with certainty then we can calculate the population
size N. Finding the maximum probability P(G|N, k) is simple, we evaluate all
possible values for N and pick the value with the highest probability.
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population size V.
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There are at least two problems with the oracle-approach:

‘ There is no oracle to gives us clear information!

‘ We do not record genealogies, our data are sequences, microsatellite loci!

‘ What about the variability of the coalescence process?




All genealogies were simulated with the same population size N, = 10, 000



freq.

25.
20.
15.
10.
5.
20 40 60 80 100
[103 generations]
Time to MRCA

MRCA = most recent common ancestor (last node in the genealogy)



‘ All individuals have the same fitness (no selection).

‘ All individuals have the same chance to be in the sample (random sampling).

‘ The coalescent allows only merging two lineages per generation. This
restricts us to to have a much smaller sample size than the population size.

n << N

‘ Yun-Xin Fu (2005) described the exact coalescent for the Wrig
and derived a maximal sample size n < 4N for a dip
Although this may look like a severe restriction for the use of t

nt-Fisher model
oid population.

ne coalescence

iIn small populations, it turned out that the coalescence is rather robust and

that even sample sizes close to the effective population size
Immensely.

are not biasing
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‘ Large samples coalesce on average in 4N generations.
‘ The time to the most recent common ancestor (TMRCA) has a large variance

‘ Even a sample with few individuals can most often recover the same TMRCA
as a large sample.

‘ The sample size should be much smaller than the population size, although
severe problems appear only with sample sizes of the same magnitude
as the population size, or with non-random samples because Kingman’s
coalescence process assumes that maximally two sample lineages coalesce
In any generation.

‘ With a known genealogy we can estimate the population size. Unfortunately,
the true genealogy of a sample is rarely known.



Genealogy and data our data looks like this:
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Genealogy and data our data looks like this:

5

ridl
rid2
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ridd
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Finding the best genealogy from such data is difficult
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‘ Finite populations loose alleles due to genetic drift
‘ Mutation introduces new alleles into a population at rate

‘ With 2N chromosomes we can expect to see every generation 2N u new
mutations. The population size N is positively correlated with the mutation
rate p.

‘ With genetic data sampled from several individuals we can use the mutational
variability to estimate the population size.




The observed genetic variability

S =f(N,u,n).
Different N and appropriate . can give the same number of mutations. For
example, for 100 loci sampled from 20 individuals with 1000bp each, we get :

Using genetic variability alone therefore does not allow to disentangle N and L.

With multiple dated samples and known generation time we can estimate /N and
1 independently.



By convention we express most results as the compound N and an inheritance

scalar x, for simplicity we call this the mutation-scaled population size
© =xNpu,

where 1 Is the mutation rate per generation and per site. With a mutation rate
per locus we use 6.

‘ for diploids: © = 4N p.
‘ for haploids: © = 2N p.

‘ For mtDNA in diploids with strictly maternal inheritance this leads to © =
2Nrp, and if the sexratiois 1 : 1then ©® = Npu

Most real populations do not behave exactly like Wright-Fisher populations,
therefore we subscript NV and call it the effective population size N,, and consider
O the mutation-scaled EFFECTIVE population size.



By convention we express most results as the compound N and an inheritance
scalar z, for simplicity we call this the mutation-scaled population size

© =xNpu,
where 1 Is the mutation rate per generation and per site. With a mutation rate
per locus we use 6.

‘ for diploids: © = 4N p.

‘ for haploids: © = 2N p.
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‘ For mtDNA in diploids with strictly maternal inheritance this leads to © —
2Nrp, and if the sexratiois 1 : 1then ©® = Npu

Most real populations do not behave exactly like Wright-Fisher populations,
therefore we subscript NV and call it the effective population size N,, and consider
© the mutation-scaled EFFECTIVE population size.
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Historical humpback whale population size
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Hlstorlcal humpback whale populatlon size

i v . .:...r _.'_'!' rl- ,I.- ".;:5_..'_-, ":-. I.;-..'-.. -I.-,:_" .':_ s " . ;: g oF
NQ £ AL Blorer, ;.'.:._..':I.,!'l'- i L ::.__‘--'1:5’.-‘-‘__1_" - i B LS __I: " 4 year and
i < . %7 ageneratio tlme of 12 years

. Sex ato*is 1=

AL U——-—-—"-\ 63,708

Ng = 2N, 127,417  ratio umed, using other
da -

used

NWNPMUV mes Rauts 203,867  from catch an
a ratio of 1.6)

i }E/cl'ore modern estimates for mtDNA: k‘OOO [improved estimation of mutation rate]; for

nchNA. 112,000(45, 000 — 235, 000) [Conservation Genetics (2013) 14:103114]
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Using the infinite sites model we use the number of variable sites .S per locus to
calculate the mutation-scaled population size:

S

n—1

Ow =
1
k

k=1

from a sample of n individuals. For a single population the Watterson’s estimator
works marvelously well, but it is vulnerable to population structure.

Watterson's 6y, uses a mutation rate per locus! To compare with other work use
mutation rate per site.



For Bayesian inference we want to calculate the probability of the model
parameters given the data p(model|D).

Coalescent to describe the population genetic processes.

Mutation model to describe the change of genetic material over time.

“p(BIA) P(A
A18).= — P(B)

Wikimedia: Neon sign at Autonomy in Cambridge UK



We calculate the Posterior distribution p(©®|D) using Bayes’ rule

where p(D|©) is the likelihood of the parameters.

Wikimedia: Neon sign at Autonomy in Cambridge UK



p(D]O,G) = p(G|O)p(D|G)

The probability density of a genealogy given parameters.

The probability density of the data for a given
genealogy. Phylogeneticists know this as the tree-
likelihood.




p(D]©) = /G b(G|©)p(D|C)dC

The probability density of a genealogy given parameters.

The probability density of the data for a given
genealogy. Phylogeneticists know this as the tree-
likelihood.
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> p(G|©)p(D|G)

G

The probability of a genealogy given parameters.

The probability of the data for a given genealogy.
Phylogeneticists know this as the tree-likelihood.
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Problem with integration formula
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Naive integration approach Plane of all trees




Naive integration approach Riemann’s sum




Another naive i
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ABC/Monte Carlo
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Inference of population size Nuu-Chah-Nulth
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Proc. Natl. Acad. Sci. USA
Vol. 88, pp. 8720-8724, October 1991

Extensive mitochondrial diversity within a single Amerindian tribe
(population genetics/molecular anthropology /Pacific Northwest/human evolution)

R. H. WARD*, BARBARA L. FRAZIER*, KERRY DEW-JAGER*, AND SVANTE PAABo*t

*Department of Human G ics, School of Medicine, University of Utah, Salt Lake City, UT 84132; and 'Department of Zoology, University of Munich,
Lui: asse 14, D-8000 Munich 2, Federal Republic of Germany

[The Nuu-Cha-Nulth are organized
in 14 nations totaling 8147
(Nuuchahnulth tribal council Indian
registry from February 2006)]
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S
Bayesian inference: © = 0.036

Ward et al calculated © e, = 0.043

With a mutation rate of 0.32/site/million year
and a generation time of 27 years we get
Nwomen = 2082. Assuming same numbers of
men and women and on average 2 children
we get NV = 8328.




0.0000 ' ' .
0.00 0.02 0.04 0.06 0.08

G
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e oy 2t single Amerindian tribe — \\Jith & mutation rate of 0.32/site/million year

R. H. WARD*, BARBARA L. FRAZIER*, KERRY DEW-JAGER*, AND SVANTE PAABo*t

*Department of Human Genetics, School of Medicine, University of Utsh, Salt Lake City, UT 84132; and tDepartment of Zoology, University of Munich, a n d a g e n e rati O n ti m e Of 2 7 ye a rS We g et

asse 14, D-8000 Munich 2, Federal Republic of Germany

[The Nuu-Cha-Nulth are organized Vwomen = 2082. Assuming same numbers of
in 14 nations totaling 8147 MeN and women and on average 2 children

(Nuuchahnulth tribal council Indian W€ gét N = 8328.

registry from February 2006)] This sounds very good, but the
95%_credibility interval is 5000 — 13500




Coalescent:

Nuu-Cha-Nulth population size: J. Felsenstein. 1971. Inbreeding and variance
effective numbers in populations with overlapping generations. Genetics
68:581-597;

R. H. Ward, B. L. Frazier, Kerry Dew-Jager, and S. Paabo. 1991. Extensive
mitochondrial diversity within a single Amerindian tribe. PNAS 88:8780-8724;

Sigurgarddttir S, Helgason A, Gulcher JR, Stefansson K, Donnelly P. 2000. The
mutation rate in the human mtDNA control region. Am J Hum Genet. 66:1599-
609;

S. Matsumura and P. Forster. 2008. Generation time and effective population
size in Polar Eskimos. Proc. R. Soc. B 275:1501-1508.

Sample size:

Felsenstein, J.2005. Accuracy of coalescent likelihnood estimates: Do we need
more sites, more sequences, or more loci? MBE 23: 691-700.

Pluzhnikov A, Donnelly P. 1996. Optimal sequencing strategies for surveying
molecular genetic diversity. Genetics 144: 1247-1262.



