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‘ calculate the probability that we wait the time interval « until a coalescent

‘ calculate the probability of the particular coalescent event

@ multiply these probabilities for all time intervals
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Waiting time for coalescent event

Probability of coalescent event

‘ calculate the probability that we wait the time interval « until a coalescent

‘ calculate the probability of the particular coalescent event

@ multiply these probabilities for all time intervals
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‘ Population growth (two parameters), fluctuations, bottlenecks
‘ Migration among populations (potentially thousands, parameters)
‘ Population splitting (many parameters)

‘ Recombination (parameters)

‘ Shortcut methods

‘ Genomics and the coalescence



Populations are rarely completely stable through time,
and attempts have been made to model population
growth or shrinkage using linear, exponential or more

general approaches.
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‘ In a small population lineages coalesce quickly

This leaves a signature in the data. We can exploit this and estimate the
population growth rate g jointly with the current population size ©.



Populations are rarely completely stable through time,
and attempts have been made to model population
growth or shrinkage using linear, exponential or more

general approaches.

‘ In a small population lineages coalesce quickly

‘ In a large population lineages coalesce slowly

This leaves a signature in the data. We can exploit this and estimate the
population growth rate g jointly with the current population size ©.
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For constant population size we found

p(G|O) = HeJ@6

Relaxing the constant size to exponential
growth and using g = r/u leads to

T 7 Ope 8
p(G|O0, g) | |e D

Present

Past



Present s e

Problems with the exponential model: Even { ”gs;b
with moderately shrinking populations, it is ”v’”//’é’

possible that the sample lineages do not

coalesce.  With growing populations this /’féz”:’f’:,,, 5
: : ‘\ﬁffjg%* S f"* 2%

problem does not occur. This discrepancy ff/—-/f,,,.-/ s

leads to an upwards biased estimate of the \ \/j,,;)\;\,»\\\i}‘%;)

growth rate for a single locus. Multiple locus /,,, ’“,“;/;-i: Q?ﬁ«’?s

estimates improve the results. %; ;,3,«"" /////E////,,,

W "’ ‘——
’fhv §% \\
,,—'f—'/%’/'
7 /(
/ ((/
/

\\\\\
“\\~\ \\
s

i ;%g” ,‘ﬁ
ﬁ:,c’;/ i
\/WM

S == 3I=3=T \\

i f%}
'*’ff'j«%ff" //mﬁ'ﬁm\:ifé\* i

“‘\\ “\\:Q:‘i‘\_ 1822000 S Sessssssins
z //..,./—f/:/«i/,/;}"_ """"" 7’/14"11'1{/_4/%#/'/'%"'»
‘see =215 = ,/./_/_%(ﬂ/’././ﬁ// \\5 \&\\ //‘,y,/.:/’/zzx//:%;:;ﬂ//
aSt oo oo ’,///” 6 66060606 '//':,//:’/’

140t 87 — @201 %7 Peter Beerll



Esto

North A
Sea Lit
1 United
14 Kingdom,
rovaks
Austna 'l lun
i"Ir'a d
: R oxtani
ll L LT
el y
; Serbia e
0 ack asea
Bulgaria i o~ Caspian
Georgia For
[ - JESTL LGS A | ra MW

15 of 87 — ©2017 Peter Beerli



1000.0

Permafrost during last glaciation
Esto!

V.‘""L’Uv Li‘t
United A

d K ngdom,

0.0

lov"ik-
~Austng

-1000.0 O o _
0.0010 0.0040  0.0100 0.0400  0.1000 0.4000 Potential Refugia o

I a A J
INOIlta i

Serbia

Growth rate ¢



e
-
D
(7p)
)
| -
al

~ N =
A $

BEAST is using

skyline) whereas MIGRATE uses a non-

parametric approach for its skyline plots that has the tendency to smooth the

fluctuations too much, compared to BEAST.
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Random fluctuations of the population size are most often ignored. BEAST

(and to some extent MIGRATE) can handle such scenarios.

a full parametric approach

Past
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~ plots of simulated influenza
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Mt 7 T~ MIGRATE and BEAST. The
o | x-axis is the time in years
O MIGRATE co?stant poot . ... and the y-axis is effective
population size. The data

50.0

are sequences from 250
+ individuals sampled at regular
Intervals over 5 years. The
dashed curve is the actual
s population size deduced from
~ the true genealogy; black
/ /. lines are the mean results of
- MIGRATE or BEAST; gray area
Is the 95% credibility interval.
.. .. . .. . . .  BEAST skyline matches
1000 the actual population size
| - . better than all other methods.
» Simulation and  graphs

courtesy of Trevor Bedford.
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The single population coalescence rate is

k(k — 1)
AN

Changes for two populations to

ki(ks — 1) ko(ks — 1)

k1M ko M
o + o, + K1V 1 + KolVlq 2
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If we consider only a single individual that is today in population A. We also know
that its ancestor was a member of population B then it will be only a matter of
time to change the population label, but when?

Today Past
R

(Palczewski, Ashki, and Beerli [in prep.] An alternative population fission model to the isolation with
migration model.) 37 of 87 — ©2017 Peter Beerli



Looking backwards in time we could think about the risk of A turning into B
which becomes larger and larger the further back in time the lineage goes. In
the coalescence framework we are well accustomed to that thinking: we use the
risk of a coalescent or the risk of a migration event. This risk can be expressed

using the hazard function (or failure rate). Here we use the hazard function of
the Normal distribution.

Today Past

(Palczewski, Ashki, and Beerli [in prep.] An alternative population fission model to the isolation with
migration model.) 38 of 87 — ©2017 Peter Beerli



One lineage is easy, but what about the genealogy? Each lineage is at risk
of being in the ancestral population, thus we need to consider coalescences,
migration events, and population label changing events. This results iIn
genealogies that are realizations of migration and population splitting events.
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Estimated versus simulated divergence times
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(Beerli, Ashki, and Palczewski [in prep.] Population divergence estimation using individual lineage label switching.)
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Estimated versus simulated divergence times

O'ZOEIKE'.R'" '.‘EW s
R NENE TN
[
)
£ o
5 o
0 0.15 o &
[
E) Nm=1.0(n=100) 0®c 00 °
T e Nm=0.25(n=100) ..0'.. s
o
3 0.10 ":50:0 R
O [
& .’.r.o . °
g et
© o |go®® ¢
£ ° 0. ¢ "...o o @
3 °_0 ®
v 0.05 Nl L~ 02
.:’c:° Ge
[
0: ®
L
0.00
0.00 0.05 0.10 0.15

scaled divergence time used to generate the data

(Beerli, Ashki, and Palczewski [in prep.] Population divergence estimation using individual lineage label switching.)
41 of 87 — ©2017 Peter Beerli



Estimated versus simulated divergence times
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Population splitting isle Gibbs, Ohio (Kubatko et al. 2011)
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Wikipedia: Sistrurus

Population splitting

Sistrurus catenatus
Sistrurus miliarius



Estimation of splitting dates of 6 subspecies
of pygmy rattle snakes using MIGRATE (data

from Kubatko et al. 2011)
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from Kubatko et al. 2011)



1("Tree 1") 3 ("Tree 3") 4 ("Tree 4")

Programs that analyze recombination: LAMARC (Kuhner et al. 2006). [see also
last section of lecture]



balancing selection: We can treat the the observed selection classes as
‘populations’ and the migration rate will become a measure of selection
pressure. (Darden, Kaplan, and Hudson 1988)

positive selection:
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Time



S0 many models — so little time




A single population allows free
interbreeding of all individuals,
mutation accumulate
approximately by N x pu
where N is the population size,
and p i1s the mutation rate per
generation.  Highly variable
populations persist longer and
can resist catastrophes better.

o-0

A structured population restricts
interbreeding to the subpopulations.
Variability in a subpopulation is gained
about Nsuppop X (m + p) where m is
the immigration rate per generation.
With very high immigration rates the
structured population behaves like a single
population.  If Ngyppop IS small the risk
of extinction is high, but such systems
are often more resistant to extinction
by a parasite/virus/bacteria because the
transmission of these is slowed down
compared to a single population.



Location versus Population
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Location versus Population
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Location ~ Population
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ocation versus Population




- 7 -
ocation = Population




With a criterium such as likellhood we can compare nested models. In
phylogenetics, we commonly use a likelihood ratio test (LRT) or Akaike’s
information criterion (AIC) to establish whether phylogenetic trees are

statistically different from each other, or which mutation model provides the best
answers among the tested models.

Kass and Raftery (1995) popularized the Bayes Factor as a Bayesian alternative
to the LRT.



Betting and Odds Ratios

Knew that we ventured on such dangerous seas
That if we wrought out life 'twas ten to one
W|II|am Shakespeare (Henry IV)

)

?%f

““"‘e

| circa. 1594 by Michelangelo Mer|S| da Caravaggi




Using Bayes’ theorem:

p(M;)p(X|M;)
p(X)

p(M;|X) =

we can express support of one model over another as a ratio:

p(M1)p(X|My)
p(M; |X) p(X)

Mo | X p(M1)p(X|My)
p(M2[X) p(X)




Using Bayes’ theorem:

p(M;)p(X|M;)
p(X)

p(M;|X) =

we can express support of one model over another as a ratio:

p(M1)p(X|My)
p(M;|X) p(X)
M-IX)  pMpp(X|My)
p( 2‘ ) p(X)

Prior Odds

_ P(Ml) «

P(Mz)




p(M1)p(X|My)
p(MiX) 5
— p(Mp)p(X|M7)

p(Mz|X) p(X)

Prior Odds

_ P(Ml) «

P(Mz)




We can use the posterior odds ratio or equivalently the Bayes factors

for model comparison:

The magnitude of BF gives us evidence against hypothesis M5

LBF =2InBF =z

\

r0< zl < 2
2<|z| <6
6 < |z| <10

\’Z’ > 10

No real difference
Positive

Strong

Very strong



So why are we not all running BF analyses instead of the AIC, BIC, DIC, FIC,
GIC, LRT, ...?



So why are we not all running BF analyses instead of the AIC, BIC, DIC, FIC,
GIC, LRT, ...?

Typically, it is rather difficult to calculate the marginal likelihoods with good
accuracy, because most often we only approximate the posterior distribution
using Markov chain Monte Carlo (MCMC).

In MCMC we need to know only differences and therefore we typically do not
need to calculate the denominator to calculate the Posterior distribution p(©|X):

p(O)p(X|O)  p(O)p(X[6)
SN T o p(O)p(X[6)de

P(OX, M) =

where p(X|M) is the marginal likelihood.



Thermodynamic integration (Path

sampling) [Gelman and Meng
1997, Lartillot et al. 2006]:
method Is tedious to compute
because several MCMC chains
are needed. Results are accurate
and reproducible with small
variance when MCMC runs were
run long enough.

In p(XM;) = / E(In pe (XM;))dt

Inverse temperature
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Thermodynamic integration (Path
sampling) [Gelman and Meng
1997, Lartillot et al. 2006]:
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We want to establish a direction of geneflow between 2 populations.

We generate 4 hypotheses

We collect data from individuals in the two populations

Analyze the data in MIGRATE



Recipe: starting with the finished dish

of the 4 hypotheses:

O—0 OO0 OO0 O

ImL -4856.2 -4822.5 -4832.6 -4837.8

Data was simulated using the second model (2) from the left.



Recipe: starting with the finished dish

of the 4 hypotheses:

O—0 OO0 OO0 O

ImL -4856.2 -4822.5 -4832.6 -4837.8

The best model (highest ImL) is the model second from left (model 2).
We can calculate the log Bayes factor for two leftmost models as

LBFi5 = 2(ImLy — ImLs) = 2(—4856.2 — —4822.5) = —67.4

The value suggests that we should strongly prefer model 2 over model 1.

Data was simulated using the second model from the left (model 2).



Recipe:

1.

2.

Pick the hypothesis with largest number of parameters

Set priors and run parameters (use heated chains) so that you are
comfortable with the result (converged, etc)

. Record the log marginal likelihood from the output.

Pick next hypothesis, adjust migration model, and run and record the log
marginal likelihood.

. Repeat (4) until all log marginal likelihoods are calculated

Compare the log marginal likelihoods, for example order the hypothesis
accordingly, or calculate the model probability



ImL -4822 5 -4832.6 -4837.8 -4856.2
P(model)  0.99 0.01 0.0 0.0

Model probability (Burnham and Anderson 2002) calculation:

exp(lmL;)  mlL,

P(M:) = S exp(imL;) Y ,mL;




Robustness of the coalescence Population model




‘ Required samples

‘ Recombination

‘ Selection



‘ The time to the most recent common ancestor is robust to different sample
sizes.

‘ Simulated sequence data from a single population have shown that after 8
individuals you should better add another locus than more individuals.

0.1}
3 0.08 | samplesize=50
Q 0.06} samplesize=10 Felsenstein (2005)
o Pluzhnikov and Donnelly
i 004y (1996)

0.02 |

001 002 0.03 0.04 005
Depth of tree



0.10 | | | | __I | | I 1000
E ¢ ¢ 2 locCi

0.08} 1 L . |{800

i ¢ ¢ 5 locCi
0.06| ] [ [ |® - 10loci|{e00
© 8}\\ M

0.04} - N N T 1400
Il s
18 \§

0.02f ‘ —E #‘;;;__ ____ 1200

0.00 2 5 10 20 2 5 10 20 0

Sample size Sample size

Medium variability DNA dataset: Mutation-scaled population size © and
mutation-scaled migration rate M versus sample size for 2, 5, and 10 loci. The
true ©7 = 0.01 is marked with the dotted gray line; M = 100
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~500 simulated datasets
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~500 simulated datasets
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Calculate the log marginal likelihoods In m L of models of interest and compare
them. This is familiar to phylogeneticists who use mutation model partitions, but
here they are analyzed independently.

Ho: 1locus [ mml = 1938

Hy:2loci [ N 10 = 1878

R mmE = 1934

Hs: 3 loci

80 of 87 — ©2017 Peter Beerli



Calculate the log marginal likelihoods In m L of models of interest and compare
them. This is familiar to phylogeneticists who use mutation model partitions, but
here they are analyzed independently.

I L = 1938

Hio: S N 1oL = 1878
- N 0L = 1918

R mmE = 1934

Sorting the Iog margmal I|keI|hoods Hla > Hlb > Hy > Hj
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The standard coalescent assumes neutral mutations and also exchangeable
number of offspring, loci under selection will violate both tenets. In the allele
frequency spectrum literature recently there is a strong push on looking at
signals of selection, which seems still very difficult in ‘traditional’ coalescence
approaches.

‘ A new mutation that has a positive effect will replace some of the variability
present in the population. All linked sites will suffer a drop in effective
population size.

‘ A new mutation that has a negative effect and will be most likely removed ,
also resulting in a reduction of variability (and population size)

This is used in genome-wide selection scans, but influence of population growth,
population structure on such estimates are not well studied.



‘ We will have a lab tonight where you will differentiate between 8 simple
population models that include "speciation” (or population splitting) with and
without migration using a data set of complete genomes of Zika viruses.

‘ (On the http://popgen.sc.fsu.edu website, check out “Bayes factors” and
“Parallel migrate”, there is also a Google support group to look up answers,
ask questions and receive answers [mostly by me])




