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Woods Hole 2015 - brief primer on Multiple Sequence
Alignment — Mark Holder

Many forms of sequence alignment are used in bioinformatics:

e Structural Alignment
e Local alignments

e Global, evolutionary alighment

— Inputs: unaligned sequences thought to be homologous over their full
length
— we often ignore events like transpositions or inversions



The goal of MSA is to introduce gaps such that:

e residues in the same column are homologous — all
descended from a residue in the common ancestor,

and
e all descendants of a residue are put in the same

column.
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Main points

e Accuracy of alignment is important.
e Pairwise alignment is tractable.
e Most MSA programs use progressive alignment:
— a series of pairwise operations.
— these algorithms are not guaranteed to return
the optimal solution.
— the criteria used are not ideal from an
evolutionary standpoint.



Main points (continued)

e Simultaneous inference of MSA and tree is the
most appropriate choice, but i1s computationally
demanding. See: Poisson Indel Process

(Boucharda
Handel, A
e Many peo

-Coté and Jordan, 2013), Bali-Phy,
IFritz, and POY software

ble cull ambiguously aligned regions.



human KRSV

chimp KRV
gorilla  KSV
orang KPRV

How we align these sequences affects tree
estimation.

human KRSV human KRSV human KRSV

chimp KR-V chimp K-RV chimp KR-V

gorilla  KS-V gorilla K-SV gorilla K-SV

orang KPRV orang KPRV orang KPRV




Pairwise alighment

Gap penalties and a substitution matrix imply a
score for any alignment. Pairwise alignment involves
finding the alignment that maximizes this score.

e substitution matrices assign positive values to
matches or substitutions between similar residues
(for example Leucine—Isoleucine).

e infrequent types of substitutions receive negative
scores

e indels are rare, so gaps are heavily penalized
(negative scores).



first base in codon

second base in codon

T C

TTT Phe TCT Ser
TTC Phe TCC Ser

TCA Ser
TCG Ser

CCT Pro
CCC Pro
CCA Pro
CCG Pro

ACT Thr
ATC lle ACC Thr
ATA lle ACA Thr
ATG Met ACG Thr

ATT lle

GCT Ala
GCC Ala
GCA Ala
GCG Ala

A

TAA stop
TAG stop

G

TGA stop

CAA GiIn
CAG GiIn

AAT Asn
AAC Asn
AAA Lys
AAG Lys

GAT Asp
GAC Asp
GAA Glu
GAG Glu

AGT Ser
AGC Ser
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BLOSUM 62 Substitution matrix

11




Scoring an alighment with the BLOSUM 62 matrix

Pongo V D E V G G E L G R L F V \Y P
Gorilla V E \Y A G D L G R L L I V Y P

Score 4 2 -2 0 6 -6 -3 -4 -2 -2 4 0 4 -1 7

The score for the alignment is
_ ()
Dij = Z di;
k

If ¢ indicates Pongo and j indicates Gorilla. (k) is
just an index for the column.

D;; =12



Scoring an alighment with gaps

If we were to use a gap penalty of -8:

Pongo V D E V G G E L G R L - F V V
Gorilla V - E V A G D L G R L L I V Y
Score 4 -8 5 5 0 6 2 4 6 5 4 -8 0 4 -1

By introducing gaps we have improved the score:

D;; = 40



Gap Penalties

Penalizing gaps more heavily than substitutions
avoids alignments like this:

Pongo VDEVGGE-LGRLFVVPTQ
Gorilla VDEVGG-DLGRLFVVPTQ



Affine gap penalties are often used to accommodate
multi-site indels:

GP = GO + (I)GE
where:
e GP is the gap penalty.
e GO is the “gap-opening penalty”
e GE is the “gap-extension penalty”

e [ is the length of the gap



Finding an optimal alighment
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Needleman-Wunsch algorithm (paraphrased)

e Work from the top left (beginning of both sequences)
e For each cell store the highest score possible for that cell

and a “back” pointer to tell point to the previous step in the
best path

e \When you reach the lower right corner, you know the optimal
score and the back pointers tell you the alignment.

The highest score calculation at each cell only depends on the
cell's 3 possible previous neighbors.

If one sequence is length My, and the other is length M5, then
Needleman-Wunsch only takes O(M7Ms) calculations.

But there are a much larger number of possible alignments (#

alignments grows exponentially).






Using a gap penalty of -5
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Pairwise alighment is a beautiful topic in bioinformatics

o Clever programming tricks let us find the best-
scoring pairwise alignment quickly

e [ he additive scoring system:

— can incorporate biological knowledge (via
empirically-based substitution matrices)

— can almost be justified in terms of powerful
statistical methodology (maximum likelihood).



Pairwise alignment costs

e Paul Lewis will explain likelihood tomorrow,
e Additive costs can be justified as approximations
to the log of likelihoods if:
— we can identify the events that must have
occurred in generate the data, and
— we can assign (relative) probabilities based on
whether these events are rare or common.



Pongo
Gorilla

Score

Pongo

G G

A G

0 6
Gorilla



Pongo V D E G G E L G R L F Vv V
Gorilla V - E A G D L G R L L I V Y
Score 4 -8 5 o 6 2 4 6 5 4 -8 0 4 -1
Pongo Gorilla

V& V P(pos. 1) =P(V < V)



Pongo v D E vV G G E L G R L - F V \Y P T

Gorilla V E v A G D L G R L L I V Y P S
Score 4 -8 5 5 0 6 2 4 6 5 4 -8 0 4 -1 7 4
Pongo Gorilla

V < V P(pos. 1 —2)=P(V < V)

D < -

xXP(D + —)



Pongo \/ D E VvV G G E L G R L F VvV Vv P T
Gorilla V - E VvV A G D L G R L L I Vv Y P S
Score 4 -8 5 5 0 6 2 4 6 5 4 -8 0 4 -1 7 4
Pongo Gorilla

V < V P(pos. 1 —3) =P(V «< V)

D < -

E s E xXP(D + —)

xP(FE < F)



Pongo \/ D E VvV G G E L G R L F VvV Vv P T
Gorilla V - E VvV A G D L G R L L I Vv Y P S
Score 4 -8 5 5 0 6 2 4 6 5 4 -8 0 4 -1 7 4
Pongo Gorilla

V< V InP(pos. 1—=3)=InP(V < V)

D < -

E s E +InP(D + —)

+InP(F < F)



Pairwise alighment summary

e The sum of the substitution and gap cost can serve

as a proxy for the log-likelihood under a reasonable

model (the LR or AIF model of Rivas and Eddy,
preprint).

e Dynamic programming can let us find the
alignment that has the highest likelihood.



from (Rausch and Reinert, 2011)

GAA-T

~AAC-

-=ACT




Multiple sequence alignment is an ugly topic in
bioinformatics

e Clever programming tricks help, but we still have
to rely on heuristics — approaches that provide
good solutions, but are not guaranteed to find the
best solution.

e The additive scoring system suffers from the fact
that we do not observe ancestral sequences.



e U is the set of unaligned sequences

e 7' is the genealogy tree that describes the ancestry of the
sequences

e H is an indel history (specification of where all inserstions
and deletions in the history of U occur on the tree T').

e A is an alignment of the sequences U

We might want:

e P(T|U)orP(A|U) or P(T,A| U). BaliPhy approximates
these quantities, but it is tough to do for large datasets.

e H which maximizes P(H | U, T). ProtPal (Westesson et al.,
2012) approximates this (but we have to know T)



Sum of Pairs scoring

Most MSA programs optimize a fairly strange score:
U

where A; is the alignment pruned down to just sequence ¢, and
w;; 1S a weight for the comparison between sequences 7 and j.

d(A;, A;) can be:

e a measure of the distance from A; to A, or
e a measure of the consistency of the alignment A with a
pairwise alignment of 7 to j.

We usually cannot guarantee that we have found the alignment
that optimizes the sum of pairs score.



Aligning more than two sequences

B DA C

|




Progressive alignment

An approximate method for producing multiple sequence
alignments using a guide tree.

e Perform pairwise alignments to produce a distance matrix
e Produce a guide tree from the distances

e Use the guide tree to specify the ordering used for aligning
sequences, closest to furthest.

Feng and Doolittle 1987 and Higgins and Sharp, 1988



HOQWP
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Alignment stage of progressive alignments

Sequences of clades become grouped as the algorithm descends
the tree. Alignment at each step involves

e Sequence-Sequence,
e Sequence-Group, or

o Group-Group



Aligning multiple sequences

B DA C E
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Seqg-Group
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Group-Group



Group-to-Group alignment
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Group-to-group alignments

Adding a gap to a group means that every member of that
group gets a gap at that position.

MQOQTITF
MQTIF/
LHFE I W

MQTIF/ S~ LHEIW

L H-~IW

LOSEW

L -S=F LQOSW

\LQSW/

LPESF— 7 s ¢

from Edgar (2004)



Group-to-group alignment

Usually the scores for each edge in the Needleman-Wunsch
graph are calculated using a “sum of pairs” scoring system.

Many tools! uses weights assighed to each sequence in a group
to down-weight closely related sequences so that they are not
overrepresented - this is a weighted sum-of-pair scoring system.

le.g. Clustal and MAFFT



Greedy choices leading to failure to find the best
alignment

Consider the scoring scheme:
match =0 mismatch =-3 gap = -7

Guide Tree: Sequences:

Spl Sp2 Sp3
Spl  GACCGTG
Sp2 GCCGTAG
Sp3 GACCGTAG



Greedy choices leading to failure to find the best
alignment

match =0 mismatch =-3 gap = -7

ungappedlvs?
Sp1 G A C C G T G

Sp2 G C C G T A G
Score 0 -3 0 -3 -3 -3 0 Total= -12

would be preferred over gappedlvs2:

Spi1 G A CCGT - G
Sp2 G - C C G T A G
Score 0 -7 0 0 0 0 -7 O Total= -14



Adding a Sp3 to ungappedlvs2:

Spl G - A C C G T G
Ssp2 G - C C G T A G
Ssp3 G A C C G T A G

This implies 1 indel, and 4 substitutions. Score = -19 *

If we had been able to use gappedlvs2 then we could have:

Sp1 G A C C G T - G
Ssp2 G - C C G T A G
Ssp3 G A C C G T A G

score = -14 *

* = “sort of...”



Polishing (aka “iterative alignment” can correct some
errors caused by greedy heuristics)

1. break the alignment into 2 groups of sequences (often by
breaking an edge in the merge tree).

2. realign those 2 groups to each other

3. keep the realignment if it improves the score

Opal also uses random 3-group polishing.



Weighted sum of pairs scoring system

Assigns a score for a group-to-group by averaging (or summing)
the scores all of the implied pairwise alignments.

Frequently w;; = w;w;

Group 1 Group 2

Seq weight AA
taxon A 0.3 V
taxon C  0.24 A
taxon E  0.19 I

Seq weight AA
taxon B 0.15 Vv
taxon D 0.25 M

D i 2o wiwsdiy

TVT 4

Dgi.ga =



Group 1
Seq weight AA

taxon A 0.3 V
taxon C 0.24 A
taxon E 0.19 I

Group 2

Seq weight AA

taxon B 0.15 V
taxon D 0.25 M

D i 2 Wiwsdy;

TV

Dgiga =

1

= —[d(V,V)wawp + d(V, M)waswp + d(A,V)wcwg . ..

6

.. d(A, Mwecwp +d(I,V)wpwp + d(I, M)wgwp]

1
= 6(4><O.3><O.15—|—1><O.3><O.25+0><O.24><0.15...

..—1x024x0254+3x0.19 x0.154+1 x 0.19 x 0.15)

= 1.46225



Sum-of-pairs is an odd scoring system




Imperfect scoring system. Consider one position in a
group-to-group alignment:

(A,A,G) (A,A,L)

~_

(A,A,G) < (A,A,L)

The sum-of-pairs score for aligning would be:

éAHm+éAHD+§GHm+5GHD



But in the context of the tree we might be pretty
certain of an A+ A event

A <~ A

Note: weighted sum-of-pairs would help reflect the effect of
ancestry better (but still not perfectly; sum-of-pairs techniques
are simply not very sophisticated forms of ancestral sequence

reconstruction).



“Consistency” based alignment

In our sum of pair scoring, we could just check how often each
pair of sequences (one from G}, and one from G,,) display the
same alignment that they did in pairwise alignment.

T-Coffee (Notredame et al., 2000) introduced the idea
of performing group-to-group alignments during progressive
alignment using this sense of consistency.



Indirect consistency arguments

In the pairwise alignments,

o if hio ~ g12

e and P17 ~ 912
e then h1o should align with pq~



Probabilistic measures of “consistency”

The simplest assessment of the consistency of an MSA to
pairwise alignments uses just the optimal pairwise alignment of
each pair.

Opal (Wheeler and Kececioglu, 2007) uses some suboptimal
alignments.

Do et al. (2005) made an important advance by proposing
the use of the probability that two residues are aligned during
consistency-based alignment (ProbCons).

The same sort of dynamic programming traversal of the
alignment grid can give us a probability that 2 residues are
aligned.



Sequence annealing

AMAP (Schwartz and Pachter, 2007) and FSA (Bradley et al.,
2009) use a sequence annealing approach:

e start with trivial alignments (all residues opposite gaps),
e anchor regions by aligning long matches,
e merge columns as long as the score keeps improving.

ACRCRCT AcmceT

i
Fig. 3 of (Bradley et al., 2009)
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Progressive alignment

e Uses a guide tree to change the MSA problem into a series
of pairwise alignment problems;

e May not return the alignment with the best weighted sum-
of-pairs scores. Early alignment decisions get “locked in”
Most aligners try to polish the alignment, but we cannot
guarantee that we have found the optimal alignment;

e Reconstruction of ancestral sequences is usually done in a
quick-and-dirty, implicit fashion or is not done at all;



PRANK

Loytynoja and Goldman (2005) showed most progressive
alignment techniques were particularly prone to compression
because of poor ancestral reconstruction:
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PRANK

Flagging inserted residues allows PRANK to effectively
skip over these positions in the ancestor, producing more
phylogenetically-sensible alignments:
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ProtPal is similar to PRANK, but is retains a set of inferred ancestral segs.
Fig. 5 of Westesson et al. (2012)



Impact of the guide tree

Using a guide tree can bias subsequent tree inference toward
the guide tree.

This can also cause inflated support.

Ironically, this effect may be more of a problem for a more
evolutionarily-sensible aligner such as PRANK or ProtPal!
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Filtering

e GUIDANCE score (Penn et al., 2010) which reflects
sensitivity of the alignment to poorly supported parts of
the guide tree; and

e Head-or-Tails algorithm (Landan and Graur, 2007) which
compares the alignment of the sequences to the alignment
that you would get from reversed forms of the sequences.

e SOAP (Loytynoja and Milinkovitch, 2001) looks for parts of
the alignment that are sensitive to alignment parameters

o trimAl (Capella-Gutiérrez et al., 2009) uses column properties
and consistency

e TCS (Chang et al., 2014) uses consistency and provides
column scores

e Gblocks, examine properties of the columns in the matrix.



Simultaneous tree inference and alighment

e |ldeally we would jointly estimate with uncertainty

e Allows for application of statistical models to improve
inference and assessments of reliability

e Just now becoming feasible: BAliPhy (Redelings and
Suchard, 2005)
See also: POY (Wheeler, Gladstein, Laet, 2002), Handel
(Holmes and Bruno, 2001) , and BEAST(Lunter et al., 2005;
Drummond and Rambaut, 2007).

e SATé (Liu et al., 2009) and PASTA (Mirarab et al., 2014)
are iterative (back and forth between tree and alignment
estimation)



SATEé repeats the following steps until termination
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SATé simulation results
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Conclusions

e Evolutionary multiple sequence alignment is still a very active
area of research.

e \We are hampered by:
— lacking a good criterion to optimize (when 7" is unknown).
— being forced to use rough heuristics to optimize the sum

of pairs scores.

e Filtering throws away information, but may be helpful

e Most phylogenetic inference tools ignore information from
the indel process (but see Rivas et al. (2008); Rivas and
Eddy (2013) and GARLI's DIMM)



Recommendations

See if BaliPhy can run on your data! If not, try FSA

Look at your alignments

Be aware that the standard aligners only consider
substitutions and indels. |f your data shows inversions,
duplications, ... there can be serious artifacts.

if you have protein-coding sequences, use amino acid or
codon-aware aligners

if you have sequences from an RNA with important secondary
structure, check out Infernal


http://infernal.janelia.org/
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Some of the tricks clustal uses to produce better
alignments

e Chooses substitution matrix (PAM or BLOSUM series for
amino acids) based on sequence similarity

e AA residues in a neighborhood affect gap opening penalty
(easier to have gaps in hydrophilic loops)

e Gap penalties are raised if a column has no gaps, but there
are gaps nearby.

e Low scoring alignments may be postponed until a later stage.



Terminal gaps

Using normal gap costs causes problems if one sequence is
missing the starting or ending residues:

Pongo VDEFKLIVEGELGRLFVVPTQ
Gorilla VD-—-————- GELGRLFVVPTQ

Instead of :

Pongo VDEFKLIVEGELGRLFVVPTQ
Gorilla ---—-—-—-- VDGELGRLFVVPTQ

(Methods that utilize local alignment information are more
appropriate in these cases).



Using free terminal gaps to avoid this problem, but you have
to watch out for:

Pongo VDEPFRFKLTNRGTSHIILVAPR
Gorilla ------ VDEPNRGTSHIILVAPR



