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Woods Hole 2015 - brief primer on Multiple Sequence
Alignment – Mark Holder

Many forms of sequence alignment are used in bioinformatics:

• Structural Alignment

• Local alignments

• Global, evolutionary alignment

– Inputs: unaligned sequences thought to be homologous over their full
length

– we often ignore events like transpositions or inversions



The goal of MSA is to introduce gaps such that:

• residues in the same column are homologous – all
descended from a residue in the common ancestor,
and

• all descendants of a residue are put in the same
column.
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Main points

• Accuracy of alignment is important.
• Pairwise alignment is tractable.
• Most MSA programs use progressive alignment:
– a series of pairwise operations.
– these algorithms are not guaranteed to return
the optimal solution.

– the criteria used are not ideal from an
evolutionary standpoint.



Main points (continued)

• Simultaneous inference of MSA and tree is the
most appropriate choice, but is computationally
demanding. See: Poisson Indel Process
(Bouchard-Côté and Jordan, 2013), Bali-Phy,
Handel, AliFritz, and POY software

• Many people cull ambiguously aligned regions.



human KRSV

chimp KRV

gorilla KSV

orang KPRV

How we align these sequences a↵ects tree
estimation.

human KRSV human KRSV human KRSV

chimp KR-V chimp K-RV chimp KR-V

gorilla KS-V gorilla K-SV gorilla K-SV

orang KPRV orang KPRV orang KPRV



Pairwise alignment

Gap penalties and a substitution matrix imply a
score for any alignment. Pairwise alignment involves
finding the alignment that maximizes this score.

• substitution matrices assign positive values to
matches or substitutions between similar residues
(for example Leucine!Isoleucine).

• infrequent types of substitutions receive negative
scores

• indels are rare, so gaps are heavily penalized
(negative scores).





BLOSUM 62 Substitution matrix

A R N D C Q E G H I L K M F P S T W Y V
A 4

R -1 5

N -2 0 6

D -2 -2 1 6

C 0 -3 -3 -3 9

Q -1 1 0 0 -3 5

E -1 0 0 2 -4 2 5

G 0 -2 0 -1 -3 -2 -2 6

H -2 0 1 -1 -3 0 0 -2 8

I -1 -3 -3 -3 -1 -3 -3 -4 -3 4

L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4

K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5

M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5

F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6

P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7

S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4

T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5

W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11

Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7

V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4

A R N D C Q E G H I L K M F P S T W Y V



Scoring an alignment with the BLOSUM 62 matrix

Pongo V D E V G G E L G R L F V V P T Q

Gorilla V E V A G D L G R L L I V Y P S R

Score 4 2 -2 0 6 -6 -3 -4 -2 -2 4 0 4 -1 7 4 1

The score for the alignment is

Dij =
X

k

d
(k)
ij

If i indicates Pongo and j indicates Gorilla. (k) is
just an index for the column.

Dij = 12



Scoring an alignment with gaps

If we were to use a gap penalty of -8:

Pongo V D E V G G E L G R L - F V V P T Q

Gorilla V - E V A G D L G R L L I V Y P S R

Score 4 -8 5 5 0 6 2 4 6 5 4 -8 0 4 -1 7 4 1

By introducing gaps we have improved the score:

Dij = 40



Gap Penalties

Penalizing gaps more heavily than substitutions
avoids alignments like this:

Pongo VDEVGGE-LGRLFVVPTQ

Gorilla VDEVGG-DLGRLFVVPTQ



A�ne gap penalties are often used to accommodate
multi-site indels:

GP = GO+ (l)GE

where:

• GP is the gap penalty.

• GO is the “gap-opening penalty”

• GE is the “gap-extension penalty”

• l is the length of the gap



Finding an optimal alignment
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pongo V D E V G G E L G R L F V V P T Q

gorilla V E V A G D L G R L L I V Y P S R
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Pongo V D E V G G E L G R L - F V V P T Q

Gorilla V - E V A G D L G R L L I V Y P S R

Score 4 -8 5 5 0 6 2 4 6 5 4 -8 0 4 -1 7 4 1
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Needleman-Wunsch algorithm (paraphrased)

• Work from the top left (beginning of both sequences)
• For each cell store the highest score possible for that cell
and a “back” pointer to tell point to the previous step in the
best path

• When you reach the lower right corner, you know the optimal
score and the back pointers tell you the alignment.

The highest score calculation at each cell only depends on the
cell’s 3 possible previous neighbors.

If one sequence is length M1, and the other is length M2, then
Needleman-Wunsch only takes O(M1M2) calculations.

But there are a much larger number of possible alignments (#

alignments grows exponentially).



V D E V G G
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Using a gap penalty of -5
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Pairwise alignment is a beautiful topic in bioinformatics

• Clever programming tricks let us find the best-
scoring pairwise alignment quickly

• The additive scoring system:

– can incorporate biological knowledge (via
empirically-based substitution matrices)

– can almost be justified in terms of powerful
statistical methodology (maximum likelihood).



Pairwise alignment costs

• Paul Lewis will explain likelihood tomorrow,
• Additive costs can be justified as approximations
to the log of likelihoods if:
– we can identify the events that must have
occurred in generate the data, and

– we can assign (relative) probabilities based on
whether these events are rare or common.



Pongo V D E V G G E L G R L - F V V P T Q

Gorilla V - E V A G D L G R L L I V Y P S R
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Pongo V D E V G G E L G R L - F V V P T Q

Gorilla V - E V A G D L G R L L I V Y P S R
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Pairwise alignment summary

• The sum of the substitution and gap cost can serve
as a proxy for the log-likelihood under a reasonable
model (the LR or AIF model of Rivas and Eddy,
preprint).

• Dynamic programming can let us find the
alignment that has the highest likelihood.



from (Rausch and Reinert, 2011)



Multiple sequence alignment is an ugly topic in
bioinformatics

• Clever programming tricks help, but we still have
to rely on heuristics – approaches that provide
good solutions, but are not guaranteed to find the
best solution.

• The additive scoring system su↵ers from the fact
that we do not observe ancestral sequences.



• U is the set of unaligned sequences
• T is the genealogy tree that describes the ancestry of the
sequences

• H is an indel history (specification of where all inserstions
and deletions in the history of U occur on the tree T ).

• A is an alignment of the sequences U

We might want:

• P(T | U) or P(A | U) or P(T,A | U). BaliPhy approximates
these quantities, but it is tough to do for large datasets.

• Ĥ which maximizes P(H | U, T ). ProtPal (Westesson et al.,
2012) approximates this (but we have to know T )



Sum of Pairs scoring

Most MSA programs optimize a fairly strange score:

SP =
X

i

X

j

wijd(Ai, Aj)

where Ai is the alignment pruned down to just sequence i, and
wij is a weight for the comparison between sequences i and j.

d(Ai, Aj) can be:

• a measure of the distance from Ai to Aj or
• a measure of the consistency of the alignment A with a
pairwise alignment of i to j.

We usually cannot guarantee that we have found the alignment
that optimizes the sum of pairs score.



Aligning more than two sequences

B D A C E



Progressive alignment

An approximate method for producing multiple sequence
alignments using a guide tree.

• Perform pairwise alignments to produce a distance matrix

• Produce a guide tree from the distances

• Use the guide tree to specify the ordering used for aligning
sequences, closest to furthest.

Feng and Doolittle 1987 and Higgins and Sharp, 1988



A  PEEKSAVTALWGKVN--VDEVGG

B  GEEKAAVLALWDKVN--EEEVGG

C  PADKTNVKAAWGKVGAHAGEYGA

D  AADKTNVKAAWSKVGGHAGEYGA

E  EHEWQLVLHVWAKVEADVAGHGQ

A  -

B  .17  -

C  .59  .60  -

D  .59  .59  .13  -

E  .77  .77  .75  .75  -

A

B

D

C

E

A  PEEKSAVTALWGKVNVDEVGG

B  GEEKAAVLALWDKVNEEEVGG

C  PADKTNVKAAWGKVGAHAGEYGA

E  EHEWQLVLHVWAKVEADVAGHGQ

D  AADKTNVKAAWSKVGGHAGEYGA

A  PEEKSAVTALWGKVNVDEVGG

B  GEEKAAVLALWDKVNEEEVGG

C  PADKTNVKAAWGKVGAHAGEYGA

E  EHEWQLVLHVWAKVEADVAGHGQ

D  AADKTNVKAAWSKVGGHAGEYGA

+

tree inference

pairwise
alignment

alignment stage



Alignment stage of progressive alignments

Sequences of clades become grouped as the algorithm descends
the tree. Alignment at each step involves

• Sequence-Sequence,

• Sequence-Group, or

• Group-Group



Aligning multiple sequences
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Group-to-Group alignment
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Group-to-group alignments

Adding a gap to a group means that every member of that
group gets a gap at that position.

from Edgar (2004)



Group-to-group alignment

Usually the scores for each edge in the Needleman-Wunsch
graph are calculated using a “sum of pairs” scoring system.

Many tools1 uses weights assigned to each sequence in a group
to down-weight closely related sequences so that they are not
overrepresented - this is a weighted sum-of-pair scoring system.

1e.g. Clustal and MAFFT



Greedy choices leading to failure to find the best
alignment

Consider the scoring scheme:
match = 0 mismatch = -3 gap = -7

Guide Tree: Sequences:

Sp1 Sp2 Sp3
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Sp1 GACCGTG

Sp2 GCCGTAG

Sp3 GACCGTAG



Greedy choices leading to failure to find the best
alignment

match = 0 mismatch = -3 gap = -7

ungapped1vs2
Sp1 G A C C G T G

Sp2 G C C G T A G

Score 0 -3 0 -3 -3 -3 0 Total= -12

would be preferred over gapped1vs2:

Sp1 G A C C G T - G

Sp2 G - C C G T A G

Score 0 -7 0 0 0 0 -7 0 Total= -14



Adding a Sp3 to ungapped1vs2:

Sp1 G - A C C G T G

Sp2 G - C C G T A G

Sp3 G A C C G T A G

This implies 1 indel, and 4 substitutions. Score = -19 ⇤

If we had been able to use gapped1vs2 then we could have:

Sp1 G A C C G T - G

Sp2 G - C C G T A G

Sp3 G A C C G T A G

score = -14 ⇤

⇤ = “sort of...”



Polishing (aka “iterative alignment” can correct some
errors caused by greedy heuristics)

1. break the alignment into 2 groups of sequences (often by
breaking an edge in the merge tree).

2. realign those 2 groups to each other

3. keep the realignment if it improves the score

Opal also uses random 3-group polishing.



Weighted sum of pairs scoring system

Assigns a score for a group-to-group by averaging (or summing)
the scores all of the implied pairwise alignments.
Frequently wij = wiwj

Group 1 Group 2

Seq weight AA

taxon A 0.3 V

taxon C 0.24 A

taxon E 0.19 I

Seq weight AA

taxon B 0.15 V

taxon D 0.25 M

DG1,G2 =

P
i

P
j wiwjdij

ninj



Group 1 Group 2

Seq weight AA

taxon A 0.3 V

taxon C 0.24 A

taxon E 0.19 I

Seq weight AA

taxon B 0.15 V

taxon D 0.25 M

DG1,G2 =

P
i

P
j wiwjdij

ninj

=
1

6
[d(V, V )wAwB + d(V,M)wAwD + d(A, V )wCwB . . .

. . . d(A,M)wCwD + d(I, V )wEwB + d(I,M)wEwD]

=
1

6
(4⇥ 0.3⇥ 0.15 + 1⇥ 0.3⇥ 0.25 + 0⇥ 0.24⇥ 0.15 . . .

. . .�1⇥ 0.24⇥ 0.25 + 3⇥ 0.19⇥ 0.15 + 1⇥ 0.19⇥ 0.15)

= 1.46225



Sum-of-pairs is an odd scoring system
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Imperfect scoring system. Consider one position in a
group-to-group alignment:

(A,A,G)

Q
Q

Q
Q

Q
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Q
QQ

⌘
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⌘
⌘
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⌘
⌘
⌘⌘

(A,A,L)

(A,A,G) $ (A,A,L)

The sum-of-pairs score for aligning would be:

4

9
(A$ A) +

2

9
(A$ L) +
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9
(G$ A) +

1

9
(G$ L)



But in the context of the tree we might be pretty
certain of an A$A event
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Note: weighted sum-of-pairs would help reflect the e↵ect of
ancestry better (but still not perfectly; sum-of-pairs techniques
are simply not very sophisticated forms of ancestral sequence
reconstruction).



“Consistency” based alignment

In our sum of pair scoring, we could just check how often each
pair of sequences (one from Gh and one from Gv) display the
same alignment that they did in pairwise alignment.

T-Co↵ee (Notredame et al., 2000) introduced the idea
of performing group-to-group alignments during progressive
alignment using this sense of consistency.



Indirect consistency arguments

In the pairwise alignments,

• if h10 ⇠ g12
• and p17 ⇠ g12
• then h10 should align with p17



Probabilistic measures of “consistency”

The simplest assessment of the consistency of an MSA to
pairwise alignments uses just the optimal pairwise alignment of
each pair.

Opal (Wheeler and Kececioglu, 2007) uses some suboptimal
alignments.

Do et al. (2005) made an important advance by proposing
the use of the probability that two residues are aligned during
consistency-based alignment (ProbCons).

The same sort of dynamic programming traversal of the
alignment grid can give us a probability that 2 residues are
aligned.



Sequence annealing

AMAP (Schwartz and Pachter, 2007) and FSA (Bradley et al.,
2009) use a sequence annealing approach:

• start with trivial alignments (all residues opposite gaps),
• anchor regions by aligning long matches,
• merge columns as long as the score keeps improving.

Fig. 3 of (Bradley et al., 2009)



Progressive alignment

• Uses a guide tree to change the MSA problem into a series
of pairwise alignment problems;

• May not return the alignment with the best weighted sum-
of-pairs scores. Early alignment decisions get “locked in”
Most aligners try to polish the alignment, but we cannot
guarantee that we have found the optimal alignment;

• Reconstruction of ancestral sequences is usually done in a
quick-and-dirty, implicit fashion or is not done at all;



PRANK

Löytynoja and Goldman (2005) showed most progressive
alignment techniques were particularly prone to compression
because of poor ancestral reconstruction:



PRANK

Flagging inserted residues allows PRANK to e↵ectively
skip over these positions in the ancestor, producing more
phylogenetically-sensible alignments:





ProtPal is similar to PRANK, but is retains a set of inferred ancestral seqs.
Fig. 5 of Westesson et al. (2012)



Impact of the guide tree

Using a guide tree can bias subsequent tree inference toward
the guide tree.

This can also cause inflated support.

Ironically, this e↵ect may be more of a problem for a more
evolutionarily-sensible aligner such as PRANK or ProtPal!



Dealing with alignment ambiguity

divergent taxon pairs and least between more highly

divergent taxon pairs10,11. The multiple alignments

generated by different parameter combinations are

then analysed separately and the only relationships

that are accepted are those that are identified across 

all (or most) alignments, that is, are present in the

strict (or majority rule) consensus of the trees that are

produced by the alternative alignments12.

This approach has not been formally named but 

is termed here the ‘multiple analysis method’. The

major drawbacks include the need for multiple and

time-consuming analyses. There is also the problem

of which trees to accept (and conversely, which to

ignore) if different alignments produce different trees.

The most conservative and objective approach of

considering all trees, and accepting relationships

found across all of these, can lead to substantial and

arguably unnecessary loss of information, especially

if a single aberrant tree is present. Choosing only a

subset of these trees, however, is subjective: for

instance, one might choose the single alignment and

tree that maximizes likelihood or minimizes either

character or topological incongruence with other 

data sets because strong phylogenetic signal is

required to generate incongruence; however, the

latter criteria might lead to choosing the alignments

containg the least phylogenetic information13,14.

Elision

In the ‘elision’method, a range of plausible

alignments is generated as detailed above. However,

instead of being analysed separately, they are

combined (‘concatenated’) into a single large matrix

and evaluated in a single analysis1,15. In Fig. 1,

combining the two possible alignments (Fig. 1b,c) 

into a single matrix (Fig. 1e) would incorporate

successfully the phylogenetic information in region Y.

The alignment of the alignment-ambiguous region 

is actually constant across taxa A–C; furthermore,

taxa D and E are always aligned so that they share

identical nucleotides and a three-base gap (Fig. 1b,c).

These consistent ‘blocks of information’appear in

every alignment and will thus be weighted the same

as the signal in alignment-constant positions

(regions X and Z). The method preferentially

downweights only the alignment-variable portions 

of the data matrix (region Y), but still retains any

consistent ‘blocks of information’, even in these regions.

Lutzoni et al.2 recently criticized the elision

method on four counts. First, if many plausible

alignments are concatenated, the alignment-variable

regions are downweighted so severely that they are in

effect deleted. However, this criticism is unjustified

because, if there are (for example) ten different

possible alignments, some regions will align

constantly across all ten alignments, some regions

might ‘flip’ equally between two alignments across 

all ten, whereas other regions might be aligned

differently in all ten. The elision method would

weight fully (100%) the only possible alignment in 

the first regions, would downweight by 50% each

alignment in the second regions, and would weight

minimally (10%) each in the third regions; thus,

alignment-variable regions are downweighted only in

proportion to their variability. A second criticism was

that ‘the implications for homology are unsettling,

because individual bases [positions?] must have

individual histories, but are not treated as such’2

(as admitted by elision’s developers1). It is true that

biological homology is all-or-nothing: two positions 

in two taxa are homologous if they are orthologous

descendants of a position present in the latest

common ancestor of the two taxa. However, the

accuracy of inferences of homology (i.e. alignment) 

is not all-or-nothing, but instead probabilistic16; it

thus seems reasonable to weight these inferences

accordingly17,18. By downweighting alignments found

only in restricted regions of parameter space, the

elision method makes the arguably reasonable

assumption that such alignments are less probable.

The two remaining criticisms were that certain

data sets could contain a plethora of alternative

alignments, and concatenation of all these
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Fig. 1. An example of alignment ambiguity and methods for coping with it. (a) Hypothetical protein-

encoding sequence data. (b) and (c) The two possible alignments of this data. (d) The relationships implied

by both possible alignments of this data. (e) The elision matrix, which is simply a fusion (concatenation)

of the two alignments. (f) Fragment-level alignment, where the sequence variants in region Y are

re-coded as different states in a single multistate character, ‘Y’. (g) The step-matrix for multistate

character ‘Y’. In this example, the different states (sequence variants) are related based on unit cost for

all substitutions and gaps; however, other cost weightings are possible and arguably more realistic.

divergent taxon pairs and least between more highly

divergent taxon pairs10,11. The multiple alignments

generated by different parameter combinations are

then analysed separately and the only relationships

that are accepted are those that are identified across 

all (or most) alignments, that is, are present in the

strict (or majority rule) consensus of the trees that are

produced by the alternative alignments12.

This approach has not been formally named but 

is termed here the ‘multiple analysis method’. The

major drawbacks include the need for multiple and

time-consuming analyses. There is also the problem

of which trees to accept (and conversely, which to

ignore) if different alignments produce different trees.

The most conservative and objective approach of

considering all trees, and accepting relationships

found across all of these, can lead to substantial and

arguably unnecessary loss of information, especially

if a single aberrant tree is present. Choosing only a

subset of these trees, however, is subjective: for

instance, one might choose the single alignment and

tree that maximizes likelihood or minimizes either

character or topological incongruence with other 

data sets because strong phylogenetic signal is

required to generate incongruence; however, the

latter criteria might lead to choosing the alignments

containg the least phylogenetic information13,14.

Elision

In the ‘elision’method, a range of plausible

alignments is generated as detailed above. However,

instead of being analysed separately, they are

combined (‘concatenated’) into a single large matrix

and evaluated in a single analysis1,15. In Fig. 1,

combining the two possible alignments (Fig. 1b,c) 

into a single matrix (Fig. 1e) would incorporate

successfully the phylogenetic information in region Y.

The alignment of the alignment-ambiguous region 

is actually constant across taxa A–C; furthermore,

taxa D and E are always aligned so that they share

identical nucleotides and a three-base gap (Fig. 1b,c).

These consistent ‘blocks of information’appear in

every alignment and will thus be weighted the same

as the signal in alignment-constant positions

(regions X and Z). The method preferentially

downweights only the alignment-variable portions 

of the data matrix (region Y), but still retains any

consistent ‘blocks of information’, even in these regions.

Lutzoni et al.2 recently criticized the elision

method on four counts. First, if many plausible

alignments are concatenated, the alignment-variable

regions are downweighted so severely that they are in

effect deleted. However, this criticism is unjustified

because, if there are (for example) ten different

possible alignments, some regions will align

constantly across all ten alignments, some regions

might ‘flip’ equally between two alignments across 

all ten, whereas other regions might be aligned

differently in all ten. The elision method would

weight fully (100%) the only possible alignment in 

the first regions, would downweight by 50% each

alignment in the second regions, and would weight

minimally (10%) each in the third regions; thus,

alignment-variable regions are downweighted only in

proportion to their variability. A second criticism was

that ‘the implications for homology are unsettling,

because individual bases [positions?] must have

individual histories, but are not treated as such’2

(as admitted by elision’s developers1). It is true that

biological homology is all-or-nothing: two positions 

in two taxa are homologous if they are orthologous

descendants of a position present in the latest

common ancestor of the two taxa. However, the

accuracy of inferences of homology (i.e. alignment) 

is not all-or-nothing, but instead probabilistic16; it

thus seems reasonable to weight these inferences

accordingly17,18. By downweighting alignments found

only in restricted regions of parameter space, the

elision method makes the arguably reasonable

assumption that such alignments are less probable.

The two remaining criticisms were that certain

data sets could contain a plethora of alternative

alignments, and concatenation of all these
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Fig. 1. An example of alignment ambiguity and methods for coping with it. (a) Hypothetical protein-

encoding sequence data. (b) and (c) The two possible alignments of this data. (d) The relationships implied

by both possible alignments of this data. (e) The elision matrix, which is simply a fusion (concatenation)

of the two alignments. (f) Fragment-level alignment, where the sequence variants in region Y are

re-coded as different states in a single multistate character, ‘Y’. (g) The step-matrix for multistate

character ‘Y’. In this example, the different states (sequence variants) are related based on unit cost for

all substitutions and gaps; however, other cost weightings are possible and arguably more realistic.

divergent taxon pairs and least between more highly

divergent taxon pairs10,11. The multiple alignments

generated by different parameter combinations are

then analysed separately and the only relationships

that are accepted are those that are identified across 

all (or most) alignments, that is, are present in the

strict (or majority rule) consensus of the trees that are

produced by the alternative alignments12.

This approach has not been formally named but 

is termed here the ‘multiple analysis method’. The

major drawbacks include the need for multiple and

time-consuming analyses. There is also the problem

of which trees to accept (and conversely, which to

ignore) if different alignments produce different trees.

The most conservative and objective approach of

considering all trees, and accepting relationships

found across all of these, can lead to substantial and

arguably unnecessary loss of information, especially

if a single aberrant tree is present. Choosing only a

subset of these trees, however, is subjective: for

instance, one might choose the single alignment and

tree that maximizes likelihood or minimizes either

character or topological incongruence with other 

data sets because strong phylogenetic signal is

required to generate incongruence; however, the

latter criteria might lead to choosing the alignments

containg the least phylogenetic information13,14.

Elision

In the ‘elision’method, a range of plausible

alignments is generated as detailed above. However,

instead of being analysed separately, they are

combined (‘concatenated’) into a single large matrix

and evaluated in a single analysis1,15. In Fig. 1,

combining the two possible alignments (Fig. 1b,c) 

into a single matrix (Fig. 1e) would incorporate

successfully the phylogenetic information in region Y.

The alignment of the alignment-ambiguous region 

is actually constant across taxa A–C; furthermore,

taxa D and E are always aligned so that they share

identical nucleotides and a three-base gap (Fig. 1b,c).

These consistent ‘blocks of information’appear in

every alignment and will thus be weighted the same

as the signal in alignment-constant positions

(regions X and Z). The method preferentially

downweights only the alignment-variable portions 

of the data matrix (region Y), but still retains any

consistent ‘blocks of information’, even in these regions.

Lutzoni et al.2 recently criticized the elision

method on four counts. First, if many plausible

alignments are concatenated, the alignment-variable

regions are downweighted so severely that they are in

effect deleted. However, this criticism is unjustified

because, if there are (for example) ten different

possible alignments, some regions will align

constantly across all ten alignments, some regions

might ‘flip’ equally between two alignments across 

all ten, whereas other regions might be aligned

differently in all ten. The elision method would

weight fully (100%) the only possible alignment in 

the first regions, would downweight by 50% each

alignment in the second regions, and would weight

minimally (10%) each in the third regions; thus,

alignment-variable regions are downweighted only in

proportion to their variability. A second criticism was

that ‘the implications for homology are unsettling,

because individual bases [positions?] must have

individual histories, but are not treated as such’2

(as admitted by elision’s developers1). It is true that

biological homology is all-or-nothing: two positions 

in two taxa are homologous if they are orthologous

descendants of a position present in the latest

common ancestor of the two taxa. However, the

accuracy of inferences of homology (i.e. alignment) 

is not all-or-nothing, but instead probabilistic16; it

thus seems reasonable to weight these inferences

accordingly17,18. By downweighting alignments found

only in restricted regions of parameter space, the

elision method makes the arguably reasonable

assumption that such alignments are less probable.

The two remaining criticisms were that certain

data sets could contain a plethora of alternative

alignments, and concatenation of all these
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Fig. 1. An example of alignment ambiguity and methods for coping with it. (a) Hypothetical protein-

encoding sequence data. (b) and (c) The two possible alignments of this data. (d) The relationships implied

by both possible alignments of this data. (e) The elision matrix, which is simply a fusion (concatenation)

of the two alignments. (f) Fragment-level alignment, where the sequence variants in region Y are

re-coded as different states in a single multistate character, ‘Y’. (g) The step-matrix for multistate

character ‘Y’. In this example, the different states (sequence variants) are related based on unit cost for

all substitutions and gaps; however, other cost weightings are possible and arguably more realistic.

from M. S. Y. Lee, TREE, 2001



Dealing with alignment ambiguity - deletion

X        Y        Z
 1 2 3 4 5 6 7 8 9 1 1 1

0 1 2

Outgroup T A G A G C A C T C A G 
Taxon A T A G A G C A C T C A G
Taxon B T A G T G A A G C C A G 
Taxon C T A G T G A A G C C A G
Taxon D T A G    A G C    C A G
Taxon E T A G    A G C    C A G

(a)

X     Z
 1 2 3 1 1 1

0 1 2

Outgroup T A G C A G
Taxon A T A G C A G
Taxon B T A G   C A G
Taxon C T A G   C A G
Taxon D T A G  C A G
Taxon E T A G C A G

X        Y        Z
 1 2 3 4 5 6 7 8 9 1 1 1

0 1 2

Outgroup T A G A G C A C T C A G 
Taxon A T A G A G C A C T C A G
Taxon B T A G T G A A G C C A G 
Taxon C T A G T G A A G C C A G
Taxon D T A G ? ? ? - - - C A G
Taxon E T A G ? ? ? - - - C A G

from M. S. Y. Lee, TREE, 2001



Filtering

• GUIDANCE score (Penn et al., 2010) which reflects
sensitivity of the alignment to poorly supported parts of
the guide tree; and

• Head-or-Tails algorithm (Landan and Graur, 2007) which
compares the alignment of the sequences to the alignment
that you would get from reversed forms of the sequences.

• SOAP (Löytynoja and Milinkovitch, 2001) looks for parts of
the alignment that are sensitive to alignment parameters

• trimAl (Capella-Gutiérrez et al., 2009) uses column properties
and consistency

• TCS (Chang et al., 2014) uses consistency and provides
column scores

• Gblocks, examine properties of the columns in the matrix.



Simultaneous tree inference and alignment

• Ideally we would jointly estimate with uncertainty

• Allows for application of statistical models to improve
inference and assessments of reliability

• Just now becoming feasible: BAliPhy (Redelings and
Suchard, 2005)
See also: POY (Wheeler, Gladstein, Laet, 2002), Handel

(Holmes and Bruno, 2001) , and BEAST(Lunter et al., 2005;
Drummond and Rambaut, 2007).

• SATé (Liu et al., 2009) and PASTA (Mirarab et al., 2014)
are iterative (back and forth between tree and alignment
estimation)



SATé repeats the following steps until termination

A

B D

C

Merge 
subproblems

Estimate ML tree 
on merged 
alignment

Decompose based on 
input tree

A B

C D

Align 
subproblems

A B

C D

ABCD



SATé simulation results



Conclusions

• Evolutionary multiple sequence alignment is still a very active
area of research.

• We are hampered by:
– lacking a good criterion to optimize (when T is unknown).
– being forced to use rough heuristics to optimize the sum
of pairs scores.

• Filtering throws away information, but may be helpful
• Most phylogenetic inference tools ignore information from
the indel process (but see Rivas et al. (2008); Rivas and
Eddy (2013) and GARLI’s DIMM)



Recommendations

• See if BaliPhy can run on your data! If not, try FSA
• Look at your alignments
• Be aware that the standard aligners only consider
substitutions and indels. If your data shows inversions,
duplications, . . . there can be serious artifacts.

• if you have protein-coding sequences, use amino acid or
codon-aware aligners

• if you have sequences from an RNA with important secondary
structure, check out Infernal

http://infernal.janelia.org/
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Some of the tricks clustal uses to produce better
alignments

• Chooses substitution matrix (PAM or BLOSUM series for
amino acids) based on sequence similarity

• AA residues in a neighborhood a↵ect gap opening penalty
(easier to have gaps in hydrophilic loops)

• Gap penalties are raised if a column has no gaps, but there
are gaps nearby.

• Low scoring alignments may be postponed until a later stage.



Terminal gaps

Using normal gap costs causes problems if one sequence is
missing the starting or ending residues:

Pongo VDEFKLIVEGELGRLFVVPTQ

Gorilla VD-------GELGRLFVVPTQ

instead of :

Pongo VDEFKLIVEGELGRLFVVPTQ

Gorilla -------VDGELGRLFVVPTQ

(Methods that utilize local alignment information are more
appropriate in these cases).



Using free terminal gaps to avoid this problem, but you have
to watch out for:

Pongo VDEPFRFKLTNRGTSHIILVAPR

Gorilla ------VDEPNRGTSHIILVAPR


