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Coalescence theory as a tool for population genetics
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Dictionary
co•a•lesce |ˌkōəˈles|
verb [ intrans. ]
come together and form one mass or whole : the puddles had

coalesced into shallow streams | the separate details coalesce to
form a single body of scientific thought.
• [ trans. ] combine (elements) in a mass or whole : to help
coalesce the community, they established an office.

DERIVATIVES

co•a•les•cence |-ˈlesəns| noun

co•a•les•cent |-ˈlesənt| adjective

ORIGIN mid 16th cent. (in the sense [bring together, unite] ):
from Latin coalescere, from co- (from cum ‘with’ ) +
alescere ‘grow up’ (from alere ‘nourish’ ).

Thesaurus
coalesce
verb
the puddles had coalesced into shallow streams: MERGE, unite, join

together, combine, fuse, mingle, blend; amalgamate,
consolidate, integrate, homogenize, converge.

Wikipedia
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• Little resolution

• Tree building method should take into
account that lineages are not independent
of each other.



Interaction among individuals Life cycle
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Interaction among individuals Life cyle
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Adult TadpoleTadpoleAdult

Wright-Fisher population model

• All individuals live one generation and get replaced by their offspring

• All have same chance to reproduce, all are equally fit

• The number of individuals in the population is constant



Population model Wright-Fisher
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Population model Wright .
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Sewall Wright evaluated the probability that two randomly chosen
individuals in generation t have a common ancestor in
generation t− 1. If we assume that there are 2N chromosomes
then the probability of sharing a common ancestor in the last generation is

t− 1

t
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Sewall Wright evaluated the probability that two randomly chosen
individuals in generation t have a common ancestor in
generation t− 1. If we assume that there are 2N chromosomes
then the probability of sharing a common ancestor in the last generation is

1.0

t− 1

t
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Sewall Wright evaluated the probability that two randomly chosen
individuals in generation t have a common ancestor in
generation t− 1. If we assume that there are 2N chromosomes
then the probability of sharing a common ancestor in the last generation is

1.0× 1

2N

t− 1

t
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Sewall Wright evaluated the probability that two randomly chosen
individuals in generation t have a common ancestor in
generation t− 1. If we assume that there are 2N chromosomes
then the probability of sharing a common ancestor in last generation is

1

2N

t− 1

t

t− 1

t

The probability that two randomly picked chromosome do not have a common
ancestor is

1− 1

2N



Population model Wright .

21 of 97 – c©2018 Peter Beerli

If we know the genealogy of the two individuals then we can
calculate the probability as

P(τ |N) =

(
1− 1

2N

)τ (
1

2N

)
where τ is the number of generations with no coalescence.
This formula is the Geometric Distribution and we can calculate
the expectation of the waiting time until two random individuals
coalesce:

E(τ) = 2N
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Probability Distribution 2N=20
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P

10000 random draw from a population with size
2N = 20 leads to this distribution of times
until two randomly chosen individuals have a
common ancestor. The observed mean waiting
time of 2N=20.34



Observations Coalescence of two

28 of 97 – c©2018 Peter Beerli

• For the time of coalescence in a sample of TWO , we will wait on average
2N generations assuming it is a Wright-Fisher population

• The model assumes that the generations are discrete and non-overlapping

• Real populations do not necessarily behave like a Wright-Fisher (the ‘ideal’
population)

• We assume that calculation using Wright-Fisher populations can be
extrapolated to real populations.



Other population models
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Wright-Fisher Canning Moran

σ2
offspring ' 1 σ2

offspring = x σ2
offspring = 2

2N

E(τ) = 2N E(τ) = 2N/x E(τ) = 1
2(2N)2

generation time g = 1 g = 1 g = 2N

You can generate graphs like this using the python program popsim
(check out my faculty page for the link)



Sample larger than TWO Wright-Fisher
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Samples larger than two
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Sir J. F. C. Kingman described in 1982 the n-coalecent. He
showed the behavior of a sample of size n, and its probability
structure looking backwards in time.

General findings:

coalescence rate =

(
n

2

)
=
n(n− 1)

2

Once a coalescence happened n is reduced to n− 1 because
two lineages merged into one. He then imposed a continuous
approximation of the Canning’s exchangeable model to get
results.



An analogy bugs-in-a-box
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Samples larger than two
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Samples larger than two
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u0
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u4

Looking backward in time, the first
coalescence between two random
individuals is the result of a waiting
process that depends on the sample n and
the total population size N .
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u0

u1

u3

u4

Looking backward in time, the first
coalescence between two random
individuals is the result of a waiting
process that depends on the sample n and
the total population size N .

Using Kingman’s coalescence rate and
imposing a time scale we can approximate
the process with an exponential distribution:
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u0

u1

u3

u4

Looking backward in time, the first
coalescence between two random
individuals is the result of a waiting
process that depends on the sample n and
the total population size N .

Using Kingman’s coalescence rate and
imposing a time scale we can approximate
the process with an exponential distribution:

P(uj|N) = e−ujλλ

with the scaled coalescence rate

λ =

(
k

2

)
1

2N
× Prob(others do not coalesce)
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u0

u1

u3

u4

Looking backward in time, the first
coalescence between two random
individuals is the result of a waiting
process that depends on the sample n and
the total population size N .

Using Kingman’s coalescence rate and
imposing a time scale we can approximate
the process with a exponential distribution:

P(uj|N) = e−ujλλ

with the scaled coalescence rate

λ =

(
k

2

)
1

2N
=
k(k − 1)

2(2N)
=
k(k − 1)

4N



Samples larger than two the coalescent
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u4

We are now able to calculate the probability
of a whole relationship tree (Genealogy
G). We assume that each coalescence is
independent from any other:

P(G|N)
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u0

u1

u3

u4

We are now able to calculate the probability
of a whole relationship tree (Genealogy
G). We assume that each coalescence is
independent from any other:

P(G|N) = P(u0|N, i1, i2)

×
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u0

u1

u3

u4

We are now able to calculate the probability
of a whole relationship tree (Genealogy
G). We assume that each coalescence is
independent from any other:

P(G|N) = P(u0|N, i1, i2)

× P(u1|N, i3, i4)
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u0

u1

u3

u4

We are now able to calculate the probability
of a whole relationship tree (Genealogy
G). We assume that each coalescence is
independent from any other:

P(G|N) = P(u0|N, i1, i2)

× P(u1|N, i3, i4)

× P(u3|N, i3,4, i5)



Samples larger than two the coalescent
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u0

u1

u3

u4

We are now able to calculate the probability
of a whole relationship tree (Genealogy
G). We assume that each coalescence is
independent from any other:

P(G|N) = P(u0|N, i1, i2)

× P(u1|N, i3, i4)

× P(u3|N, i3,4, i5)

× P(u4|N, i1,2, i3,4,5)



Samples larger than two the coalescent
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u0

u1

u3

u4

We are now able to calculate the probability
of a whole relationship tree (Genealogy
G). We assume that each coalescence is
independent from any other:

P(G|N) = P(u0|N, i1, i2)

× P(u1|N, i3, i4)

× P(u3|N, i3,4, i5)

× P(u4|N, i1,2, i3,4,5)

P(G|N) =

T∏
j=0

e−uj
kj(kj−1)

4N
2

4N



Samples larger than two the coalescent
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u0

u1

u3

u4

Each interval uj is independent of
the others, the expected length of
the interval is the inverse of the
coalescent rate. Thus we can
sum these expectations to get to
expectation of the depth of the
genealogy.

E(τMRCA) = Sum of the expectation of each time interval =

J∑
j=0

4N

kj(kj − 1)

lim
k→∞

E(τMRCA) = 2N +
2

3
N +

1

3
N +

1

5
N +

2

15
N + ... = 4N lim

k→∞
σ(τMRCA) = 4N



What is it good for? Coalescence
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If we know the genealogy G with certainty then we can calculate the population
size N . Finding the maximum probability P(G|N, k) is simple, we evaluate all
possible values for N and pick the value with the highest probability.



What is it good for? Using an oracle
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If we know the genealogy G with certainty then we can calculate the population
size N . Finding the maximum probability P(G|N, k) is simple, we evaluate all
possible values for N and pick the value with the highest probability.
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If we know the genealogy G with certainty then we can calculate the population
size N . Finding the maximum probability P(G|N, k) is simple, we evaluate all
possible values for N and pick the value with the highest probability.



Population size estimation using an oracle
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If an oracle gives us the true relationship tree G then we can calculate the
population size N .

p(G|N,n) =

n∏
k=2

exp

(
−uk

k(k− 1)

4N

)
2

4N
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If an oracle gives us the true relationship tree G then we can calculate the
population size N .

p(G|N,n) =

n∏
k=2

exp

(
−uk

k(k− 1)

4N

)
2

4N
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If an oracle gives us the true relationship tree G then we can calculate the
population size N .

p(G|N,n) =

n∏
k=2

exp

(
−uk

k(k− 1)

4N

)
2

4N
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If an oracle gives us the true relationship tree G then we can calculate the
population size N .
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If an oracle gives us the true relationship tree G then we can calculate the
population size N .

p(G|N,n) =

n∏
k=2

exp

(
−uk

k(k− 1)

4N

)
2

4N
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If an oracle gives us the true relationship tree G then we can calculate the
population size N .

p(G|N,n) =

n∏
k=2

exp
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−uk

k(k− 1)

4N

)
2
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If an oracle gives us the true relationship tree G then we can calculate the
population size N .

p(G|N,n) =

n∏
k=2

exp

(
−uk

k(k− 1)

4N

)
2

4N
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If an oracle gives us the true relationship tree G then we can calculate the
population size N .

p(G|N,n) =

n∏
k=2

exp

(
−uk

k(k− 1)

4N
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If an oracle gives us the true relationship tree G then we can calculate the
population size N .

p(G|N,n) =

n∏
k=2

exp

(
−uk

k(k− 1)

4N

)
2

4N
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If an oracle gives us the true relationship tree G then we can calculate the
population size N .

p(G|N,n) =

n∏
k=2

exp

(
−uk

k(k− 1)

4N

)
2

4N



Population size estimation
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There are at least two problems with the oracle-approach:

• There is no oracle to gives us clear information!

• We do not record genealogies, our data are sequences, microsatellite loci!

• What about the variability of the coalescence process?



Variability of the coalescent process Coalescence
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All genealogies were simulated with the same population size Ne = 10, 000



Variability of the coalescent process Coalescence
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20 40 60 80 100

5.

10.

15.

20.

25.

[10-6]

[103 generations]
Time to MRCA 

freq.

MRCA = most recent common ancestor (last node in the genealogy)



Kingman’s n-coalescent is an approximation Sample size
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• All individuals have the same fitness (no selection).

• All individuals have the same chance to be in the sample (random sampling).

• The coalescent allows only merging two lineages per generation. This
restricts us to to have a much smaller sample size than the population size.

n << N

• Yun-Xin Fu (2005) described the exact coalescent for the Wright-Fisher model
and derived a maximal sample size n <

√
4N for a diploid population.

Although this may look like a severe restriction for the use of the coalescence
in small populations, it turned out that the coalescence is rather robust and
that even sample sizes close to the effective population size are not biasing
immensely.



Kingman’s n-coalescent is an approximation Sample size
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Kingman’s n-coalescent is an approximation Sample size
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Observations Coalescence
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• Large samples coalesce on average in 4N generations.

• The time to the most recent common ancestor (TMRCA) has a large variance

• Even a sample with few individuals can most often recover the same TMRCA
as a large sample.

• The sample size should be much smaller than the population size, although
severe problems appear only with sample sizes of the same magnitude
as the population size, or with non-random samples because Kingman’s
coalescence process assumes that maximally two sample lineages coalesce
in any generation.

• With a known genealogy we can estimate the population size. Unfortunately,
the true genealogy of a sample is rarely known.



Genealogy and data our data looks like this:
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Finding the best genealogy from such data is difficult

Genealogy and data our data looks like this:
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Genetic data and the coalescent

73 of 97 – c©2018 Peter Beerli

• Finite populations loose alleles due to genetic drift

• Mutation introduces new alleles into a population at rate µ

• With 2N chromosomes we can expect to see every generation 2Nµ new
mutations. The population size N is positively correlated with the mutation
rate µ.

• With genetic data sampled from several individuals we can use the mutational
variability to estimate the population size.



Population size
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The observed genetic variability

S = f(N,µ, n).

Different N and appropriate µ can give the same number of mutations. For
example, for 100 loci sampled from 20 individuals with 1000bp each, we get :

N µ 4Nµ Ŝ σ2
S

1250 10−5 0.05 153.95 16.25

12500 10−6 0.05 152.89 16.05

Using genetic variability alone therefore does not allow to disentangle N and µ.

With multiple dated samples and known generation time we can estimate N and
µ independently.



Mutation-scaled population size
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By convention we express most results as the compound Nµ and an inheritance
scalar x, for simplicity we call this the mutation-scaled population size

Θ = xNµ,

where µ is the mutation rate per generation and per site. With a mutation rate
per locus we use θ.

• for diploids: Θ = 4Nµ.

• for haploids: Θ = 2Nµ.

• For mtDNA in diploids with strictly maternal inheritance this leads to Θ =
2Nfµ, and if the sex ratio is 1 : 1 then Θ = Nµ

Most real populations do not behave exactly like Wright-Fisher populations,
therefore we subscriptN and call it the effective population sizeNe, and consider
Θ the mutation-scaled EFFECTIVE population size.



Mutation-scaled population size
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Gag Grouper starts out
as a female and later in
live becomes male.

By convention we express most results as the compoundNµ and an inheritance
scalar x, for simplicity we call this the mutation-scaled population size

Θ = xNµ,

where µ is the mutation rate per generation and per site. With a mutation rate
per locus we use θ.

• for diploids: Θ = 4Nµ.

• for haploids: Θ = 2Nµ.

• For mtDNA in diploids with strictly maternal inheritance this leads to Θ =
2Nfµ, and if the sex ratio is 1 : 1 then Θ = Nµ

Most real populations do not behave exactly like Wright-Fisher populations,
therefore we subscriptN and call it the effective population sizeNe, and consider
Θ the mutation-scaled EFFECTIVE population size.

[ t]this is a test



Historical humpback whale population size
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Humpback whales in the North Atlantic: Census population size around 12,000.



Historical humpback whale population size
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using the data by Joe Roman and Stephen R. Palumbi (Science 2003 301: 508-
510)

Θ = 2N~µ 0.01529 Population size of the North
Atlantic population, estimated
using migrate

N~ = Θ
2µ 31,854 with µ = 2.0×10−8bp−1year−1 and

a generation time of 12 years

Ne = N~ +N| 63,708 Sex ratio is 1:1

NB = 2Ne 127,417 ratio NB/Ne assumed, using other
data

NT = NB
Njuveniles+Nadults

Nadults
203,867 from catch and survey data (used

a ratio of 1.6)

More modern estimates for mtDNA: 150, 000 [improved estimation of mutation rate]; for
nucDNA: 112, 000(45, 000− 235, 000) [Conservation Genetics (2013) 14:103114]



Genetic data and the coalescent Watterson’s θ
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Using the infinite sites model we use the number of variable sites S per locus to
calculate the mutation-scaled population size:

θW =
S

n−1∑
k=1

1
k

from a sample of n individuals. For a single population the Watterson’s estimator
works marvelously well, but it is vulnerable to population structure.

Watterson’s θW uses a mutation rate per locus! To compare with other work use
mutation rate per site.



Construction of a versatile estimator Modern inference
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For Bayesian inference we want to calculate the probability of the model
parameters given the data p(model|D).

Coalescent to describe the population genetic processes.

Mutation model to describe the change of genetic material over time.



Construction of a versatile estimator Modern inference
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We calculate the Posterior distribution p(Θ|D) using Bayes’ rule

p(Θ|D) =
p(Θ)p(D|Θ)

p(D)

where p(D|Θ) is the likelihood of the parameters.



(almost) Felsenstein equation aka Likelihood calculation
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p(D|Θ, G) = p(G|Θ)p(D|G)

p(G|Θ) The probability density of a genealogy given parameters.

p(D|G)
The probability density of the data for a given
genealogy. Phylogeneticists know this as the tree-
likelihood.



Felsenstein equation aka Likelihood calculation
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p(D|Θ) =

∫
G

p(G|Θ)p(D|G)dG

p(G|Θ) The probability density of a genealogy given parameters.

p(D|G)
The probability density of the data for a given
genealogy. Phylogeneticists know this as the tree-
likelihood.



Felsenstein equation aka Likelihood calculation
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p(D|Θ) =
∑
G

p(G|Θ)p(D|G)

p(G|Θ) The probability of a genealogy given parameters.

p(D|G) The probability of the data for a given genealogy.
Phylogeneticists know this as the tree-likelihood.



p(D|Θ) =

∫
G

p(G|Θ)p(D|G)dG

The number of possible genealogies is very
large and for realistic data sets, programs
need to use Markov chain Monte Carlo
methods.

Problem with integration formula
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Naive integration approach Plane of all trees
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Naive integration approach Riemann’s sum
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Another naive integration approach ABC/Monte Carlo
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Metropolis-Hastings algorithm MCMC
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Metropolis-Hastings algorithm MCMC
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Metropolis-Hastings algorithm MCMC
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Metropolis-Hastings algorithm MCMC
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Metropolis-Hastings algorithm MCMC
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Metropolis-Hastings algorithm MCMC
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Metropolis-Hastings algorithm MCMC
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Mode=0.009032.5% percentile=0.007

97.5% percentile=0.0118

Mean=0.00934
Median=0.00934

Bayesian inference: Θ = 0.00903

Watterson Estimator ΘW = 0.01003

Inference of population size Example
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