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o calculate the probability that we wait the time interval « until a coalescent

o calculate the probability of the particular coalescent event

o Multiply these probabilities for all time intervals
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— Waiting time for coalescent event

— Probability of coalescent event

o calculate the probability that we wait the time interval « until a coalescent
o calculate the probability of the particular coalescent event

o Multiply these probabilities for all time intervals

3 of 89 — ©2018 Peter Beerli



e ——

— — .EL
e S g

4 of 89 — (©2018 Peter Beerli



NEL
—— ORINELS

5 of 89 — (©2018 Peter Beerli



6 of 89 — (©2018 Peter Beerli



7 of 89 — ©2018 Peter Beerli



o Population growth (two parameters), fluctuations, bottlenecks

o Migration among populations (potentially thousands, parameters)
o Population splitting (many parameters)

o Recombination (parameters)

e Shortcut methods

o Genomics and the coalescence
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Populations are rarely completely stable through time,
and attempts have been made to model population
growth or shrinkage using linear, exponential or more

general approaches.
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Populations are rarely completely stable through time,
and attempts have been made to model population
growth or shrinkage using linear, exponential or more

general approaches.
o In a small population lineages coalesce quickly

This leaves a signature in the data. We can exploit this and estimate the
population growth rate g jointly with the current population size ©.



Populations are rarely completely stable through time,
and attempts have been made to model population
growth or shrinkage using linear, exponential or more
general approaches.

o In a small population lineages coalesce quickly

o In alarge population lineages coalesce slowly

This leaves a signature in the data. We can exploit this and estimate the

population growth rate g jointly with the current population size @ﬁ S0 n018 perer Bt
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For constant population size we found
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Relaxing the constant size to exponential
growth and using g = r/u leads to
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Present

Problems with the exponential model: Even
with moderately shrinking populations, it is
possible that the sample lineages do not
coalesce. With growing populations this
problem does not occur. This discrepancy
leads to an upwards biased estimate of the
growth rate for a single locus. Multiple locus
estimates improve the results.
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Comparison of the skyline

100.0

~ _ plots of simulated influenza
o < I~ N / \ dynamics  analyzed by
~~~~~ : B e T / MIGRATE and BEAST. The
o | x-axis is the time in years
O MIGRATE co?stant pbiof ... and the y-axis is effective
o population size. The data
/~ are sequences from 250
o _ J * individuals sampled at regular
Wl intervals over 5 years. The
" BEAST constant prior J dashed curve is the actual
55 R = population size deduced from
_ the true genealogy; black
) 7™\ /. lines are the mean results of
NNV A S S\~ MIGRATE or BEAST; gray area
o , et R is the 95% credibility interval.
0 BEASTSkyl’”le .., . . .. ... ... ... BEAST skyline matches
109 the actual population size
4 /. better than all other methods.
& N : " Simulaton  and  graphs
. courtesy of Trevor Bedford.
. BEASTskyride
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Time
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The single population coalescence rate is

k(k —1)
AN

Changes for two populations to
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Beerli (2006) Comparison of Bayesian and maximum likelihood inference of population genetic parameters. Bioinformatics.
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Beerli (2006) Comparison of Bayesian and maximum likelihood inference of population genetic parameters. Bioinformatics.
31 of 89 — ©2018 Peter Beerli



Beerli (2006) Comparison of Bayesian and maximum likelihood inference of population genetic parameters. Bioinformatics.
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Beerli (2006) Comparison of Bayesian and maximum likelihood inference of population genetic parameters. Bioinformatics.
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Beerli, P. (2009). How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use.
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Hey 2010
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a N

0.41 MYR

IM: isolation with migration;
Vo T co-estimation of divergence
parameters, population
sizes and migration rates.
Not all datasets can
separate migration from
divergence, and multiple
loci are helpful.

Ancestral Ne (thousands): 8.4
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if we consider only a single individual that is today in population A. We also know
that its ancestor was a member of population B then it will be only a matter of
time to change the population label, but when?

Today Past
e

(Palczewski, Ashki, and Beerli [in prep.] An alternative population fission model to the isolation with
migration model.) 41 of 89 — ©2018 Peter Beer



Looking backwards in time we could think about the risk of A turning into B
which becomes larger and larger the further back in time the lineage goes. In
the coalescence framework we are well accustomed to that thinking: we use the
risk of a coalescent or the risk of a migration event. This risk can be expressed
using the hazard function (or failure rate). Here we use the hazard function of

the Normal distribution.

Today Past

(Palczewski, Ashki, and Beerli [in prep.] An alternative population fission model to the isolation with
migration model.) 42 of 89 — ©2018 Peter Beerli



One lineage is easy, but what about the genealogy? Each lineage is at risk

of being in the ancestral population, thus we need to consider coalescences,
migration events, and population label changing events. This results in
genealogies that are realizations of migration and population splitting events.

(Palczewski, Ashki, and Beerli [in prep.] An alternative population fission model to the isolation with
migration model.) 43 of 89 — ©2018 Peter Beerli
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Population splitting isle Gibbs, Ohio (Kubatko et al. 2011)
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S. m. miliaris
S. m. barbouri
S. m. streckeri

S. c. tergeminus

S. c. edwardsii >. C. catenatus

0.0080

Estimation of splitting dates of 6 subspecies
of pygmy rattle snakes using MIGRATE (data
from Kubatko et al. 2011)
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S. m. miliaris
S. m. barbouri
S. m. streckeri

S. c. tergeminus

S. c. edwardsii 3. C. catenatus

0.0080

Model Log(mL) LBF Model-probability
1: 3 species: -15887.49 0.00 1.0000
2: 6 species: -15961.95 -74.46 0.0000

Estimation of splitting dates of 6 subspecies of pygmy rattle
snakes using MIGRATE (data from Kubatko et al. 2011)
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1 ("Tree 1") 3 ("Tree 3") 4 ("Tree 4")

Programs that analyze recombination: LAMARC (Kuhner et al. 2006). [see also
last section of lecture]
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balancing selection: We can treat the the observed selection classes as
‘populations’ and the migration rate will become a measure of selection
pressure. (Darden, Kaplan, and Hudson 1988)

positive selection:

Frequency

Time
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Time

—
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Time

—
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Time
—
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Mashayekhi and Beerli (in review) The Fractional Coalescent.

Time

—

Fractional Coalescent using a generalization of the standard Poisson process
that describes the arrival of events, we can replace Kingman’s n-coalescent with
a construct that is based on the Mittag-Leffler function £ that is dependent on a
parameter « that describes the variability of the sojourn time of the coalescent
events. A potential application is the use in situation when the quality of nest
sites is not equal.

f(u|®) = u* ' AEq a(—Au)

k(k—1)
\ =
O
o xn
— <
Ea.p(T) nZ:OF(om,—i—B)’ O<a<lp,zelC
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Mashayekhi and Beerli (in review) The Fractional Coalescent.

Time

—

Fractional Coalescent using a generalization of the standard Poisson process
that describes the arrival of events, we can replace Kingman’s n-coalescent with
a construct that is based on the Mittag-Leffler function £ that is dependent on a
parameter « that describes the variability of the sojourn time of the coalescent
events. A potential application is the use in situation when the quality of nest
sites is not equal.

f(u|®) = u* ' AEq a(—Au®)

k(k—1)
\ =
O
> " a=1 = n o " ,
ga,ﬁ(x)_;r(anJrﬁ) /;F(n%—l)_nzzoﬁ_e
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So many models — so little time




_Structured vs non-strustured populations [
@-o

A single population allows free A structured population restricts
interbreeding of all individuals, interbreeding to the subpopulations.
mutation accumulate Variability in a subpopulation is gained
approximately by N x pu  about Ngppop X (m + u) where m is
where N is the population size, the immigration rate per generation.
and p is the mutation rate per With very high immigration rates the
generation.  Highly variable structured population behaves like a single
populations persist longer and population.  If Ngyppop is small the risk
can resist catastrophes better. of extinction is high, but such systems
are often more resistant to extinction
by a parasite/virus/bacteria because the
transmission of these is slowed down
compared to a single population.
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Location versus Population




Location = Population




With a criterium such as likelihood we can compare nested models. In
phylogenetics, we commonly use a likelihood ratio test (LRT) or Akaike’s
information criterion (AIC) to establish whether phylogenetic trees are

statistically different from each other, or which mutation model provides the best
answers among the tested models.

Kass and Raftery (1995) popularized the Bayes Factor as a Bayesian alternative
to the LRT.
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Betting and Odds Ratios

Knew that we ventured on such dangerous seas
That if we wrought out life 'twas ten to one
William Shakespeare (Henry 1V).

- circa. 1_59_4, by Michelangelo Merisi da Caravaggi



Using Bayes’ theorem:

p(M)p(X|M;)
p(X)

P(M1|X) —

we can express support of one model over another as a ratio:

p(M1)p(X|My)

p(M; |X) . p(X)
M-I1X)  p(Mi1)p(X|My)
p(M2|X) p(X)
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Using Bayes’ theorem:

p(M)p(X|M;)
p(X)

P(M1|X) —

we can express support of one model over another as a ratio:

p(M1)p(X|My)

p(M1|X)  — pX
M-IX)  pMi)p(X|M;)
p(M:[X) b(X)

Prior Odds
P(M1)
P(M2)

X
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p(M1)p(X|My)

p(M1|X)  —px
— p(Myp(X|My)
p(M2|X) 1p(X)

Prior Odds
P(Ml)
P(M2)

X
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We want to establish a direction of geneflow between 2 populations.

We generate 4 hypotheses

We collect data from individuals in the two populations

Analyze the data in MIGRATE
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Recipe: starting with the finished dish
of the 4 hypotheses:

O—0 O —0 OO0 O

ImL -4856.2 -4822.5 -4832.6 -4837.8

Data was simulated using the second model (2) from the left. .. . . o0 coen



Recipe: starting with the finished dish
of the 4 hypotheses:

O—0 O —0 OO0 O

ImL -4856.2 -4822.5 -4832.6 -4837.8

The best model (highest ImL) is the model second from left (model 2).
We can calculate the log Bayes factor for two leftmost models as

LBF12 = 2(lmL1 — lng) = 2(—48562 — —48225) = —67.4

The value suggests that we should strongly prefer model 2 over model 1.

Data was simulated using the second model from the left (model 2)... . ... coon



Recipe:

1.

2.

Pick the hypothesis with largest number of parameters

Set priors and run parameters (use heated chains) so that you are
comfortable with the result (converged, etc)

Record the log marginal likelihood from the output.

Pick next hypothesis, adjust migration model, and run and record the log
marginal likelihood.

Repeat (4) until all log marginal likelihoods are calculated
Compare the log marginal likelihoods, for example order the hypothesis

accordingly, or calculate the model probability
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ImL -4822.5 -4832.6 -4837.8 -4856.2
P(model)  0.99 0.01 0.0 0.0

Model probability (Burnham and Anderson 2002) calculation:

exp(ImL;)  mL,

PM:) = S iexp(imL;)  S.mL;
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Robustness of the coalescence Population model




e Required samples

e Recombination

o Selection
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e Ihe time to the most recent common ancestor is robust to different sample
sizes.

o Simulated sequence data from a single population have shown that after 8
individuals you should better add another locus than more individuals.

Frequency

0.1}
0.08 |
0.06 |
0.04 |
0.02 }

samplesize=50

samplesize=10 Felsenstein (2005)
Pluzhnikov and Donnelly
(1996)

-

001 002 0.03 0.04 005
Depth of tree
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true ©1 = 0.01 is marked with the dotted gray line; M = 100
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~500 simulated datasets

<§‘ 600 . . . . . .

400t | -

200} l -
O .............. I_ e e e e s :._.._..._.. SEREELEERTERERREEE ________I ..............

0.01 0.05 0.1 0.5 1.0 5.0
Ratio of recombination rate versus mutation rate R

scaled migration rate

Averages with 95% credibility intervals of runs with different mutation-scaled
recombination rates R = C'/u. The dotted lines mark the "true’ values.
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~500 simulated datasets
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recombination rates R = C'/u. The dotted lines mark the "true’ values.
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Calculate the log marginal likelihoods In m L of models of interest and compare
them. This is familiar to phylogeneticists who use mutation model partitions, but
here they are analyzed independently.

Ho: 1locus [ momL = —1038
Hi:2loci [ N 10l = 1878

Hy: 3loci [ L = 1934
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Calculate the log marginal likelihoods In m L of models of interest and compare
them. This is familiar to phylogeneticists who use mutation model partitions, but
here they are analyzed independently.

Ho: T oL = 1938

Hio . T N 1oL = 1878
Hyp: T N 1oL = 1918

Hy: [ L = 1934

Sorting the Iog marglnal Ilkel|hoods Hla > Hlb > Hy > Hj
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The standard coalescent assumes neutral mutations and also exchangeable
number of offspring, loci under selection will violate both tenets. In the allele
frequency spectrum literature recently there is a strong push on looking at
signals of selection, which seems still very difficult in 'traditional’ coalescence
approaches.

o A new mutation that has a positive effect will replace some of the variability
present in the population. All linked sites will suffer a drop in effective
population size.

o A new mutation that has a negative effect and will be most likely removed ,
also resulting in a reduction of variability (and population size)

This is used in genome-wide selection scans, but influence of population growth,
population structure on such estimates are not well studied.
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e We will have a lab tonight where you will differentiate between 8 simple
population models that include “"speciation” (or population splitting) with and
without migration using a data set of complete genomes of Zika viruses.

e (On the http://popgen.sc.fsu.edu website, check out “Bayes factors” and
“Parallel migrate”, there is also a Google support group to look up answers,
ask questions and receive answers [mostly by me])
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