All models are good, but only some are useful

$$
i^{2} i^{2} i^{2} i^{2} i^{2} i^{2} i^{2} \quad \frac{1}{i} i^{2} i^{2}
$$

On models

Essentially, all models are wrong, but some are useful.

Box, George E. P.; Norman R. Draper (1987). Empirical Model-Building and Response Surfaces, p. 424, Wiley.

On models and data

On data and models

On models and data

Population genetics models

Population models

$11 / 77$

Population models

12/77

Population models

Population models

Population models

Mutation

Migration
introduces variability

Population models

Population size $=f($ Alleles, Mutation, Migration, population size in last generation $)$

$$
N_{t}=f\left(X, \mu, m, N_{t-1}\right)
$$

Simply looking only at a single population this is

$$
N_{t}=f\left(X, \mu, N_{t-1}\right)
$$

Population models

O-0,00000000000000000

Population models

Population models

0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
193	9	0

Population models

$$
\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
20 & 0 & 0 & 0
\end{array}
$$

Population models

$$
\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
213 & 9 & 0 & 0 & 0 \\
210 & 0 & 20 & 0
\end{array}
$$

Population models

$$
\begin{aligned}
& \begin{array}{lllll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array} \\
& \begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array} \\
& \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \\
& \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \\
& \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \\
& \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \\
& \bigcirc \bigcirc \bigcirc \bigcirc \\
& \begin{array}{lllll}
0 & \bigcirc & \bigcirc & 0 \\
0 & 0 & 0 & 0 & 0
\end{array} \\
& 223-1070000
\end{aligned}
$$

Population models

Population models

Population models

Population models

Population models

Coalescence theory

3277
©2023 Peter Beerli

Coalescence theory

Coalescence theory

Present

u_{2}

$$
\mathrm{p}(\mathrm{G} \mid \Theta, \mathrm{n})=\prod_{\mathrm{k}=2}^{\mathrm{n}} \exp \left(-\mathrm{u}_{\mathrm{k}} \frac{\mathrm{k}(\mathrm{k}-1)}{\Theta}\right) \frac{2}{\Theta}
$$

All genealogies were simulated with the same population size $N_{e}=10,000$

Variability of the coalescent process

Population Parameter Inference

Population Parameter Inference

Population model

The relationship among individuals can be expressed, looking backward in time, by a waiting process where random lineages
coalesce
migrate between populations
split off an ancestral population

Population genetics

Each of these processes can be expressed as a waiting time process with rate λ for N populations and k_{j} lineages in population j :

*using a Normal distribution to model the splitting time between two populations.

$$
\begin{aligned}
\lambda_{\mathrm{two} \text { lineages coalesce }} & =\sum_{j=1}^{N} \frac{k_{j}\left(k_{j}-1\right)}{4 N} \\
\lambda_{\text {lineages migrate }} & =\sum_{j=1}^{N} \sum_{i=1, i \neq j}^{N} k_{j} m_{i j} \\
\lambda_{\text {lineages split off }}{ }^{*} & =\frac{k \sqrt{\frac{2}{\pi}} e^{\frac{(t-\mu)^{2}}{2 \sigma^{2}}}}{\sigma\left(1-\operatorname{erf}\left(\frac{t-\mu}{\sqrt{2} \sigma}\right)\right)}
\end{aligned}
$$

Combining the parts

$$
P\left(\Theta \mid \mathbf{D}_{1}, \mathbf{D}_{2}, \ldots, \mu\right)=\frac{P(\Theta) P\left(\mathbf{D}_{1}, \mathbf{D}_{2}, \ldots \mid \Theta\right)}{P\left(\mathbf{D}_{1}, \mathbf{D}_{2}, \ldots\right)}=\frac{P(\Theta) \int_{G} P(G \mid \Theta) \prod_{i}^{n_{\text {Loci }}} P\left(\mathbf{D}_{\mathbf{i}} \mid G, \mu\right) d G}{\int_{\Theta} P(\Theta) \int_{G} P(G \mid \Theta) \prod_{i}^{n_{\text {Loci }}} P\left(\mathbf{D}_{\mathbf{i}} \mid G, \mu\right) d G d \Theta}
$$

$$
P(G \mid \Theta)=\prod_{i=1}^{K} \lambda_{x} \exp \left(-t_{i}\left[\lambda_{\text {coalescence }}+\lambda_{\text {migration }}+\lambda_{\text {spliting }}\right]\right)
$$

$\Theta \quad$ vector of parameters for population size, migration and splitting parameters.
$\mathrm{D}_{1}, \mathrm{D}_{2}, \ldots$ independent genetic sequence data, mutation model, nuisance genealogies that we integrate out (we are interested in the parameters not the trees). the particular event on the genealogy
$4 K / 77$ ©2023 Peeter Beent

Finally....

$$
p(D \mid \Theta)=\int_{G} p(G \mid \Theta) p(D \mid G) d G
$$

The number of possible genealogies is very large and for realistic data sets, programs need to :use Markov chain Monte Carlo methods:

Naive integration approach

Naive integration approach

Another naive integration approach

Metropolis-Hastings algorithm

Metropolis-Hastings algorithm

Metropolis-Hastings algorithm

Metropolis-Hastings algorithm

7

Metropolis-Hastings algorithm

7

Metropolis-Hastings algorithm

$51 / 77$ ©0023 Peetr feent

Metropolis-Hastings algorithm

$52 / 77$ ©0023 Peetr feent

So many models - so little time

Gene flow

Divergence and Gene flow

Neanderthal

Present
'Modern' human

Even more different structural models

Model comparison

With a criterium such as likelihood we can compare nested models. Commonly we use a likelihood ratio test (LRT) or Akaike's information criterion (AIC) to establish whether phylogenetic trees are statistically different or mutation models have an effect on the outcome, etc.

Kass and Raftery (1995) popularized the Bayes Factor as a Bayesian alternative to the LRT.

Bayesian inference

60/77 ©2023 Peter Beerli

Bayes factor

Theoretically, we can calculate the posterior probability density of the model

$$
\mathrm{p}\left(\mathrm{M}_{1} \mid \mathrm{X}\right)=\frac{\mathrm{p}\left(\mathrm{M}_{1}\right) \mathrm{p}\left(\mathrm{X} \mid \mathrm{M}_{1}\right)}{\mathrm{p}(\mathrm{X})}
$$

Bayes factor

Theoretically, we can calculate the posterior probability density of the model 1 and model 2

$$
\begin{aligned}
& \mathrm{p}\left(\mathrm{M}_{1} \mid \mathrm{X}\right)=\frac{\mathrm{p}\left(\mathrm{M}_{1}\right) \mathrm{p}\left(\mathrm{X} \mid \mathrm{M}_{1}\right)}{\mathrm{p}(\mathrm{X})} \\
& \mathrm{p}\left(\mathrm{M}_{2} \mid \mathrm{X}\right)=\frac{\mathrm{p}\left(\mathrm{M}_{2}\right) \mathrm{p}\left(\mathrm{X} \mid \mathrm{M}_{1}\right)}{\mathrm{p}(\mathrm{X})}
\end{aligned}
$$

Bayes factor

Theoretically, we can calculate the posterior probability density of the model 1 and model 2

$$
\frac{\mathrm{p}\left(\mathrm{M}_{1} \mid \mathrm{X}\right)}{\mathrm{p}\left(\mathrm{M}_{2} \mid \mathrm{X}\right)}=\frac{\frac{\mathrm{p}\left(\mathrm{M}_{1}\right) \mathrm{p}\left(\mathrm{X} \mid \mathrm{M}_{1}\right)}{\mathrm{p}(\mathrm{X})}}{\frac{\mathrm{p}\left(\mathrm{M}_{2}\right) \mathrm{p}\left(\mathrm{X} \mid \mathrm{M}_{1}\right)}{\mathrm{p}(\mathrm{X})}}
$$

Bayes factor

We could look at the posterior odds ratio or equivalently the Bayes factors.

$$
\frac{\mathrm{p}\left(\mathrm{M}_{1} \mid \mathrm{X}\right)}{\mathrm{p}\left(\mathrm{M}_{2} \mid \mathrm{X}\right)}=\frac{\mathrm{p}\left(\mathrm{M}_{1}\right)}{\mathrm{p}\left(\mathrm{M}_{2}\right)} \times \frac{\mathrm{p}\left(\mathrm{X} \mid \mathrm{M}_{1}\right)}{\mathrm{p}\left(\mathrm{X} \mid \mathrm{M}_{2}\right)}
$$

$$
\mathrm{BF}=\frac{\mathrm{p}\left(\mathrm{X} \mid \mathrm{M}_{1}\right)}{\mathrm{p}\left(\mathrm{X} \mid \mathrm{M}_{2}\right)} \quad \mathrm{LBF}=2 \ln \mathrm{BF}=2 \ln \left(\frac{\mathrm{p}\left(\mathrm{X} \mid \mathrm{M}_{1}\right)}{\mathrm{p}\left(\mathrm{X} \mid \mathrm{M}_{2}\right)}\right)
$$

Bayes factor

$$
\mathrm{BF}=\frac{\mathrm{p}\left(\mathrm{X} \mid \mathrm{M}_{1}\right)}{\mathrm{p}\left(\mathrm{X} \mid \mathrm{M}_{2}\right)} \quad \mathrm{LBF}=2 \ln \mathrm{BF}=2 \ln \left(\frac{\mathrm{p}\left(\mathrm{X} \mid \mathrm{M}_{1}\right)}{\mathrm{p}\left(\mathrm{X} \mid \mathrm{M}_{2}\right)}\right)
$$

The magnitude of BF gives us evidence against or for hypothesis M_{2}

$$
\mathrm{LBF}=2 \ln \mathrm{BF}=z \quad \begin{cases}0<|z|<2 & \text { No real difference } \\ 2<|z|<6 & \text { Positive } \\ 6<|z|<10 & \text { Strong } \\ |z|>10 & \text { Very strong }\end{cases}
$$

Bayes factor example

$$
\mathrm{LBF}=2 \ln \mathrm{BF}=2 \ln \left(\frac{\mathrm{p}\left(\mathrm{X} \mid \mathrm{M}_{1}\right)}{\mathrm{p}\left(\mathrm{X} \mid \mathrm{M}_{2}\right)}\right)=2(-9638.69)-(-9641.01)=4.64
$$

The magnitude of BF gives us evidence against or for hypothesis M_{2}

$$
\mathrm{LBF}=2 \ln \mathrm{BF}=z \quad \begin{cases}0<|z|<2 & \text { No real difference } \\ 2<|z|<6 & \text { Positive } \\ 6<|z|<10 & \text { Strong } \\ |z|>10 & \text { Very strong }\end{cases}
$$

Posterior model probability

Instead of calculating the Bayes factor we could use the probability of all tested models M_{i} and use them as weights (cf. Burnham and Anderson,1998)

$$
\begin{aligned}
p_{i}^{*} & =\frac{\mathrm{p}\left(\mathrm{X} \mid \mathrm{M}_{\mathrm{i}}\right)}{\sum_{j} \mathrm{p}\left(\mathrm{X} \mid \mathrm{M}_{\mathrm{j}}\right)}, \quad \sum_{i} p_{i}^{*}=1, \quad \ell_{1}=-9638.61, \quad \ell_{2}=-9641.01 \\
p_{1}^{*} & =\frac{\exp \left(\ell_{1}\right)}{\exp \left(\ell_{1}\right)+\exp \left(\ell_{2}\right)}=0.911 \\
p_{2}^{*} & =\frac{\exp \left(\ell_{2}\right)}{\exp \left(\ell_{1}\right)+\exp \left(\ell_{2}\right)}=0.089
\end{aligned}
$$

Marginal likelihood

Typically, it is rather difficult to calculate the marginal likelihoods with good accuracy, because most often we only approximate the posterior distribution using Markov chain Monte Carlo (MCMC).
In MCMC we need to know only differences and therefore we typically do not need to calculate the denominator to calculate the Posterior distribution $\mathrm{p}(\Theta \mid \mathrm{X})$:

$$
p(\Theta \mid X, M)=\frac{p(\Theta) p(X \mid \Theta)}{p(X \mid M)}=\frac{p(\Theta) p(X \mid \Theta)}{\int_{\Theta} p(\Theta) p(X \mid \Theta) d \Theta}
$$

where $p(X \mid M)$ is the marginal likelihood, which we need for our model selection!

Estimation of the marginal likelihood

\rightarrow
Harmonic mean estimator [Kass and Raftery 1995]: methods is easy and used in many programs, results are biased and overestimate the marginal likelihood, variance of estimates can be very large.

Thermodynamic integration (Path sampling) [Gelman and Meng 1997, Lartillot et al. 2006]: method is tedious to compute because several MCMC chains are needed. Results are accurate and reproducible with small variance when MCMC runs were run long enough.

Stepping stone approach (Xie et al. 2011)

Population models

$70 / 77$ ©eooz3 Peter Beerif

Simulated data

Two loci simulated from model x0Dx:

Model	Log (mL)	LBF*	Model-probab
1: xxxx	-9662.42	-23.73	0.0000
2: xDxx:	-9661.98	-23.29	0.0000
3: xxDx:	-9661.52	-22.83	0.0000
4: xd0x:	-9656.51	-17.82	0.0000
5: xD0x:	-9649.33	-10.64	0.0000
6 : xx 0 x :	-9648.93	-10.24	0.0000
7: x0dx:	-9641.77	-3.08	0.0402
8: x0xx:	-9641.01	-2.32	0.0859
9: x0Dx:	-9638.69	0.00	0.8739

3: xxDx:
4: xdOx:
5: xD0x:
6: xx0x:
7: x0dx:

9: x0Dx:
-9638.69 0.00
0.8739

Simulated data

Two loci simulated from model x0Dx:

Model	Log (mL)	LBF*	Model-probability
1: xxxx:	-9662.42	-23.73	0.0000
2: xDxx:	-9661.98	-23.29	0.0000
3: xxDx:	-9661.52	-22.83	0.0000
4: xd0x:	-9656.51	-17.82	0.0000
5: xDOx:	-9649.33	-10.64	0.0000
6: xx0x:	-9648.93	-10.24	0.0000
7: x0dx:	-9641.77	-3.08	0.0402
8: x0xx:	-9641.01	-2.32	0.0859
9: x0Dx:	-9638.69	0.00	0.8739

4: xdOx:
-9656.51
-17. 82
0.0000
$-9649.33-10.64 \quad 0.0000$
-9648.93 -10.24 0.0000
-9641.77 -3.08
0.0402
-9641. 01
0.00
0.8739

We did not include the correct mode!!

Two loci simulated from model xODx:

Model	Log (mL)	LBF*	Model-probability
1:xxxx:	-9662.42	-21.41	0.0000
2:xBxx:	-9661.98	-20.97	0.0000
3:xxBx:	-9661.52	-20.51	0.0000
4:xd0x:	-9656.51	-15.50	0.0000
5:xB0x:	-9649.33	-8.32	0.0002
6:xx0x:	-9648.93	-7.92	0.0002
7:x0dx:	-9641.77	-0.76	0.3185
8:x0xx:	-9641.01	0.00	0.6811
est	$)^{\frac{2}{1}}{ }^{\frac{2}{1}}{ }^{\frac{1}{1}}$		$\left.\stackrel{1}{\square} \overbrace{}^{\frac{2}{4}}\right\|^{\frac{1}{3}}{ }^{\frac{1}{4}}$ Worst

Lisa N. Barrow, A. T. Bigelow, C. A. Phillips, and E. Moriarty Lemmon (2015) Phylogeographic inference using Bayesian model comparison across a fragmented chorus frog species complex. Molecular Ecology

Population splitting

Model	$\log (\mathrm{mL})$	LBF	Model-probability
$1:$	3 species:	-15887.49	0.00
$2:$	6 species:	-15961.95	-74.46

Estimation of splitting dates of 6 subspecies of pygmy rattle snakes 75sing TuıbRAFEe(dała from Kubatko et al. 2011)

Summary

You may be surprised that your favored model does not win in a model comparison competition, but figuring out the model order leads oftentimes to new insights about the problem.

Models by themselves are not true or wrong. BUT they may not fit your data well, OR they describe your data even when you "know" that the model is insufficient.

Thank you

Lucrezia Bieler.

National Science Foundation

Michal Palzcewski, http://popgèn.sć.fsu.edu Haleh Ashki, Justin Bricker, Somayeh Mashayekhi, Kyle Shaw

