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2 When population samples of molecular data, such as sequences,
are taken, the members of the sample are related by a gene tree whose
shape is affected by the population processes, such as genetic drift,
change of population size, and migration. Genetic parameters such as
recombination also affect that genealogy. Likelihood inference of these
parameters involves summing over all possible genealogies. There is a
vast number of these, so that exact computation is not possible. Grif-
fiths and Tavaré have proposed computing these likelihoods by Monte
Carlo integration. Our group is doing this by the Metropolis-Hastings
method of Markov Chain Monte Carlo integration. We now have, in
our LAMARC package, programs to do this for constant-sized and growing
populations, and for geographically structured populations. The bias of
the estimator of population growth rate is discussed. One can also allow
for samples stratified in time, as with fossil DNA or sequential samples
from the population of a virus in a patient. A program for recombining
sequences is in progress, and we hope to put together an object-oriented
environment which can cope with a variety of evolutionary forces.

1. Introduction. Samples of genes from natural populations of organisms
are related by a genealogy, which is usually unknown. At the level of the copies of
the genes, such a genealogy would specify where each copy of the gene came from.
Thus, a particular copy that we sample may have come from the mother of that
individual, from her father, from his father, from his mother, and so on, back in
time. Other copies are doing the same. As we go back, occasionally two of these
lineages will coalesce, as it happens that two copies of a gene are descended from
the same parental copy. Thus, my great-great-great-grandmother might happen
to be the sibling of your great-great-great-grandfather, and the genes we possess
might then turn out to be copied from the same copy in one of their parents.
Such coalescences are inevitable in natural populations.

Figure 1 shows such a pattern of ancestry. Each circle is an individual who
has two copies of the gene; we are concerned not just with the genealogy of
the individuals, but with the genealogy at the gene level. In the figure, time
flows upwards. The sample consists of three copies of the gene taken from the
latest generation (at the top). Arrows show the copies of the gene transmitted
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Time

Fig. 1. A coalescent tree of gene copies that is formed in a diagram showing from which gene
in the previous generation each gene copy comes. Large circles are individuals, small circles are
copies of genes. Three copies in the current generation trace back to two copies 6 generations
earlier.
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from parent to offspring. When we go backwards in time along the arrows, we
go downwards, and the lineages gradually coalesce. The rate of this coalescence
is higher in small populations than in large ones, simply because the chance
that the ancestors of two copies of the gene are the same is greater in a small
population.

We have reasonably straightforward models of change in the DNA sequences
of such genes, based on the neutral mutation theory of evolution. We can, for
example, assume that all sites in the gene change at the same rate µ per gen-
eration, according to one of the standard Markov models for base subtitution,
which specify probabilities of change among the four states A, C, G, and T. If
we were to know the genealogy of the copies in detail, statistical estimation of
the rates of mutation would be possible, as well as testing of hypotheses about
the mutational process. The genealogy is itself the result of a stochastic process,
dependent on Ne, the effective population size. This would be the population
size if the population reproduced according to an idealized Wright-Fisher model;
as it is, it corrects for some departures from such a model. We could imagine
using the genealogy to estimate Ne and test hypotheses about it.

However, we don’t know the genealogy. We must therefore integrate over our
uncertainty about it. This turns out to confound Ne and µ, and create a large
computational problem. In this paper, we will outline the problem, our own
Markov Chain Monte Carlo approach, and relate it to the work of Griffiths and
Tavaré, who have suggested another Monte Carlo sampling approach. We will
also sketch how population growth, migration, recombination, and fossil DNA
sequences can be accomodated in our scheme.

2. The Coalescent. It has been known since the work of Sewall Wright,
in the 1930’s, that if we choose two copies of a gene from a random-mating pop-
ulation, the time since their common ancestor is geometrically distributed, with
expectation 2N generations. (For the moment we use N , the actual population
size, as we are dealing with idealized models). As 2N is typically reasonably
large, it is also well-approximated by an exponential distribution with that ex-
pectation. In 1982 Kingman [1, 2, 3] generalized this to n copies by defining the
coalescent process, and proving that the distribution of the genealogies of the
n copies converges to it when scaled properly. While Kingman’s methods were
sophisticated, the resulting distribution is easy to describe and use. This is fortu-
nate, for Kingman’s result is fundamental to the analysis of population samples
of DNA sequences.

In the coalescent in a population whose size is N , one can sample from the
distribution of the possible genealogies of n copies by the following procedure:

1. Set k = n and T = 0.

2. Draw a random quantity uk from an exponential distribution with expec-
tation 4N/(k(k − 1)).

3. Pick two of the k copies of the gene at random, without replacement.
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4. Create a node of the genealogical tree which is the immediate common
ancestor of these two copies, and which existed T + uk generations before
the present.

5. Set T = T + uk.

6. Replace these two copies by this common ancestor and set k = k − 1.

7. If k = 1 we are done. Otherwise return to step 2.

Thus we go back through a series of exponential time intervals, combining
randomly chosen pairs of lineages, until we get a complete tree. The expected
time to reach the common ancestor of all copies is 4N(1−1/n) generations. The
lineages combine rapidly at first, then more slowly as we go back, and the last
two are expected to take 2N generations to find their common ancestor, more
than half of the expected time. An interesting implication of the coalescent is
that a sample of modest size has an excellent chance that its common ancestor
will also be the common ancestor of all copies of the gene in the population.

Kingman’s coalescent is an approximation, valid when n2 " N , but it is
in practice extraordinarily accurate. Given the departures that real populations
show from any of these idealized models, inaccuracy of Kingman’s approximation
is the least of our worries. Kingman’s coalescent defines the prior distribution
of genealogies, and has given its name to the whole area: researchers studying
ancestry of samples of genes from populations are said to be working on coales-
cents.

There are many possible departures from the idealized Wright-Fisher model
that underlies Kingman’s result, but the coalescent is in effect a diffusion ap-
proximation. Many different models of reproduction of single populations will
have the same diffusion approximation, and hence the same coalescent process,
provided we replace the actual population size N by the appropriate effective
population size Ne.

3. Likelihoods. The coalescent gives us a prior distribution of the geneal-
ogy G′, which has its intervals expressed in generations. As a product of ex-
ponential densities, it is easily written down and easily computed. Its density
function is

f (G′|Ne) =
n∏

k=2

2
4Ne

exp
(
−k(k − 1)

4Ne
uk

)
(3.1)

where uk is the length of the interval during which the genealogy G′ has k lin-
eages. If we were able to observe the coalescence intervals uk, we could estimate
Ne. Note that the event that actually occurs brings in a factor of 2/(4Ne) rather
than k(k − 1)/(4Ne) as we know which two lineages have coalesced. The prod-
uct of these factors of 2/(k(k − 1)) represents the probability of sampling the
particular “labelled history” [13] from among all those possible.
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Of course, we do not actually observe coalescence intervals. For most kinds of
contemporary data, we can observe only the differences between the members of
our sample. For example, for DNA sequences, we can see the number of positions
(sites) at which the molecules differ. That gives us a picture of the coalescence
times, but only a clouded picture. We need to make inferences about parame-
ters such as Ne by using a model of the change in the DNA. The notion of a
molecular clock provides such a model. We assume a Markov process operating
independently at each site in the DNA, with a mutation rate µ. By equating
long-term change to mutation, we are implicitly basing ourselves on the neutral
mutation model of evolution made famous by Motoo Kimura [4, 5]. We can use
a stochastic model of DNA change, and make assumptions of independence of
change in different sites and in different lineages, to compute the probability of
the observed sequences D given a genealogy G′. One of us (J.F.) has outlined
how to do this [6] and Ziheng Yang, Gary Churchill, and he have more recently
shown how to incorporate autocorrelated variation of evolutionary rates from
site to site using a Hidden Markov Model approach [7, 8, 9, 10].

We cannot be certain of the genealogy G′. In fact, it is the role of the data
to illuminate it, however dimly. To compute the likelihood of the coalescent
parameter Ne and the mutation rate µ given the data D, we must integrate over
all possible genealogies [11, 12]

Prob (D|Ne, µ) =
∫

G′
f(G′|Ne) Prob(D|G′, µ).(3.2)

We describe the integration below. The probability of D given G′ and µ which
appears on the right is the probability calculated by our Markov process model of
evolution, the same quantity that is computed in maximum likelihood inference
of phylogenies. The quantity µ is a rate of mutation per generation; in more
complex cases this may be replaced by several parameters.

Neither of the terms inside the integral in equation 3.2 is hard to compute. The
quantity f is given by (3.1) and the other probability requires effort proportional
to the total number of DNA bases in our sample, times the square of the number
of states at a site, which is 4. The computational problem comes from the vast
size of the space of genealogies G′. The space of values of G′ is a union of a very
large number of Euclidean spaces. Edwards [13] enumerated these: they are his
“labelled histories”. With n sequences there are n!(n−1)!/2n−1 of them, so that
with only 10 sequences there are 2.571×109 labelled histories. Each one of these
has n − 1 node times. The integration in (3.2) must be over all values of these,
so that each of these billions of terms integrates over n− 1 dimensions. Clearly
there is a computational problem here.

All attempts to find mathematical simplifications for this integration have
so far failed. Nevertheless two groups – Griffiths and Tavaré and ourselves –
have attempted to use Monte Carlo integration. This can work because many
of the billions of possible labelled histories make rather little contribution to
the integral, because they lead to very low values of the term Prob(D|G′). We
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will describe our approach first, and then show the relationship between the two
approaches, which appear at first sight to be quite different.

4. A Metropolis-Hastings approach. Our approach has been to use
Markov Chain Monte Carlo sampling, in particular the Metropolis-Hastings
method [14, 15]. We want to sample from the terms of (3.2) using importance
sampling, with our importance function being as close as possible to the the that
is being integrated. Our approach for the simplest case – a single population of
constant size, with no recombination – is outlined by Kuhner et. al. [16, 17].

In that case, it turns out that we can change the time scale of the genealogies.
The entities G′ have their node times given in generations. Instead we can rescale
them to be in units of 1/µ generations, where µ is the underlying neutral muta-
tion rate of the DNA model that we use. Thus if a node in the genealogical tree
is 100,000 generations ago, and the underlying mutation rate µ is 10−7, when
rescaled the node is 0.01 mutations ago. These are of course expected mutations
per site, not actual mutations. Informally, we can write this by saying that the
genealogy is now G rather than G′, and

G = µG′.(4.3)

The result of this change of variables is of course to alter the density f as well.
The coalescence intervals uk in (3.1) are replaced by vk = µuk, and a factor
of 1/µ comes into each term in the resulting density as well. The result is the
density:

g(G|Θ) =
n∏

k=2

2
Θ

exp
(
−k(k − 1)

Θ
vk

)
(4.4)

where Θ = 4Neµ. This resembles closely the widely-used parameter θ that is
frequently estimated in evolutionary genetics, except that it contains the neutral
mutation rate per site rather than per locus.

The result of this change of scale is that the probability Prob(D|G′, µ) can
be replaced by Prob(D|G), as the branch lengths of G are already multiplied by
the mutation rate. In most DNA models, the elapsed time t in generations must
be multiplied by a rate of mutation µ before it can be used. If we are given the
product µt we can compute the transition probability directly from it. The result
is that (3.2) now becomes:

Prob (D|Θ) =
∫

G
g(G|Θ)Prob(D|G).(4.5)

If there were more parameters than µ, one would have to change Prob(D|G) by
adding ratios of parameters, such as Prob(D|G, µ2/µ1). Our objective becomes
computing the likelihood of the parameter Θ.

To approximate the integral we take as our importance function the quan-
tity g(G|Θ)Prob(D|G), which immediately raises the issue of what value of Θ
to use. Ideally one would want to sample at the maximum likelihood value of
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Θ, but we cannot know in advance what this will be. Our strategy has been to
make a rough estimate of Θ, which we call Θ0, and use that for an initial sam-
pling, sampling from g (G|Θ0) Prob(D|G). We sample genealogies G1, G2, . . .,
Gm by taking an initial genealogy and making successive alterations to it, doing
acceptance/rejection sampling appropriately according to a Metropolis-Hastings
algorithm. This forms a Markov chain of genealogies. We use that for an ini-
tial sampling, then find a maximum likelihood value based on the sample from
that first Markov chain. This is then taken as the provisional value for a second
Markov chain, and so on. We have usually run 10 of these chains, then two much
longer ones at the end. The final likelihood curve is computed from the second
of these long chains. In our programs the user can customize the number and
lengths of the chains.

5. Importance sampling and likelihood curves. One useful property of
Metropolis-Hastings sampling is that we can estimate the whole likelihood curve
from a single run of a Markov chain, rather than having to compute each point on
the likelihood surface from a separate run. Suppose that we sample m genealogies
from a Markov chain which has its equilibrium distributiion proportional to
g(G|Θ0) Prob(D|G). Call the sampled genealogies the Gi. The usual importance
sampling formula for Monte Carlo integration gives:

∫

G
g(G|Θ)Prob(D|G) $ 1

m

m∑

i=1

g(Gi|Θ)Prob(D|Gi)
g(Gi|Θ0) Prob(D|Gi)

=
1
m

m∑

i=1

g(Gi|Θ)
g(Gi|Θ0)

(5.6)

this allows us to estimate the likelihood for other values of Θ from a run of
the Markov chain at Θ0. Note that the likelihood curve depends only on the
Kingman priors of the sampled Gi at Θ and at Θ0. This makes it seem that the
data are not involved at all; they actually affect the Markov Chain Monte Carlo
sampling process and affect the final likelihood through their effect on which Gi

are sampled.

6. The Markov Chain sampling. Our samples of the genealogies G must
come from a distribution proportional to g(G|Θ0) Prob(D|G). We achieve this
through a sampling based on conditional coalescents. A conditional coalescent
may be described as a distribution on G that has its density proportional to the
coalescent density g(G|Θ0) on some domain of G’s, and has density 0 elsewhere.
In our programs the conditional coalescents are created by a process of dissolving
part of a tree, and reforming that part by allowing lineages to sample their
ancestry randomly according to a conditional coalescent. In the original paper
by Kuhner et. al. [16], the region of the tree that was dissolved had a single
lineage at its base and three lineages at its top. The three lineages, which were
not necessarily contemporaneous, were then re-formed into a tree by allowing
them to coalesce, but requiring that all three coalesce into a single lineage by the
time the base of the dissolved region was reached. The details of how this was
done will be found in that paper.
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Fig. 2. A conditional coalescent method of altering a tree. A single lineage is chosen at random
to be altered (the lineage below z in A). It is removed from the tree (B) and then its coalescence
with the remaining lineages is simulated (C). Tree D shows the result.

More recently, we have changed to a different conditional coalescent suggested
by Peter Beerli. In this, a lineage is selected, and is disconnected from the ge-
nealogy, with the lineage being dissolved back up the tree to the next highest
coalescent node. It is then allowed to sample its ancestry downwards (backwards
in time) until it re-connects to the tree. Note that sometimes this will mean it
reconnects below the previous root of the tree. Figure 2 shows this process in a
single population. A branch of the tree is chosen at random. In this case it is the
one below tip z (tree A). Tree B shows the tree with that branch removed. In
tree C we see the process of simulating the conditional coalescence of that lineage
with the remaining ones. During the topmost interval of the tree (the time down
to line j), the instantaneous rate of coalescence of that lineage with each of the
three others is 2/Θ0, for a total of 6/Θ0. We generate an exponential random
variate with mean Θ0/6, which is the time until coalescence of that lineage with
one of the three others. In this case (line 1 in tree C) the time is too long, and
takes the lineage past line j. We then consider the lineage to have remained dis-
tinct back as far as line j. Starting at that time, we have two other lineages, for
a total instantaneous rate of coalescence of 4/Θ0. We then draw an exponential
variate with mean Θ0/4. This time, which defines line k, turns out to be a time
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above the next coalescence, which is the root of the tree. So we connect our new
lineage to the tree at the time of line k, choosing one of the two lineages as the
one to which it will be connected. The resulting tree is D.

Note that it is possible for any of the lineages, other than the one that is below
the root, to be chosen to be dissolved, and it may reconnect to the tree below
the original root. The method requires one exponential variate to be generated
for each coalescence interval on the remaining part of the tree. If there are m
other lineages in an interval, the instantaneous rate of coalescence with them is
2m/Θ.

Having proposed this change, we decide whether to accept it. The method of
generating the new tree is a conditional coalescent, which means that if the old
tree is Gold and the new tree Gnew, then

Prob (Gnew|Gold) = KProb (Gnew|Θ0)(6.7)

for some constant K, as the density from which Gnew is drawn is proportional
to the coalescent density. An analogous equation holds for Prob (Gold|Gnew). In
constructing the rule for acceptance and rejection, we use these in the Hastings
ratio terms, accepting the new tree if a uniform random fraction r satisfies

r < Prob(Gold|Gnew)
Prob(Gnew|Gold)

Prob(Gnew|Θ0) Prob(D|Gnew)
Prob(Gold|Θ0) Prob(D|Gold)

< Prob(Gold|Θ0)
Prob(Gnew|Θ0)

Prob(Gnew|Θ0) Prob(D|Gnew)
Prob(Gold|Θ0) Prob(D|Gold)

< Prob(D|Gnew)
Prob(D|Gold) .

(6.8)

Thus the conditional coalescent causes cancellation of the Hastings terms and
the Kingman prior term, leaving only the ratio of the likelihoods of the trees.
These would be the likelihoods of these genealogies, given the data, if the ge-
nealogies were treated as parameters (which they are not). The machinery to
compute likelihoods on genealogies is the same as it is on phylogenies, and it is
well-enough known (e.g. [6]) not to need to be treated here. Note that we can
use any type of data for which such likelihoods are available, including DNA
sequences, microsatellite copy numbers, restriction sites, and even isozyme mo-
bilities. Note also that we have only modified part of the tree, so that we need
only recalculate the likelihoods for the parts of the two trees that differ, a con-
siderable saving. The rearrangement strategy described here has some similarity
to that used by Li et. al. [18] but their strategy dissolves only branches leading
to tips, and does not use the conditional coalescent for reattachment.

As an example, Figure 3 shows the likelihood curve generated by a run of on
the mitochondrial DNA data set of Ward et. al. [19]. The estimate of Θ is 0.0396.
Taking an interval two units of log-likelihood below the maximum suggests that
the estimate lies between about 0.03 and 0.055. This curve was generated by two
long chains of 12,000 steps each, sampling trees every 20 steps. Further details
are given by Kuhner et. al. [16].
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Fig. 3. The log-likelihood curve for Θ for the data of Ward et. al.
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The method is computationally feasible on workstations or fast desktop com-
puters. Computational effort seems to rise slowly with the number of sequences,
especially since we can re-use many of the likelihood computations from one tree
to the next. If only part of a tree has changed we can re-use the likelihoods from
the rest of the tree. However there are no easy generalizations about how long
the Markov chains must be run.

7. The method of Griffiths and Tavaré. Our Monte Carlo sampling
approach was preceded by the pioneering and innovative method of Griffiths and
Tavaré [20, 21, 22]. At first sight their method appears to bear no relation to ours,
and to have considerable advantages over it. A close examination shows that the
two methods are related, and makes clear the advantages and disadvantages of
our approach.

Griffiths and Tavaré have as their objective the same likelihood function that
we compute. They form a system of recurrence equations expressing this like-
lihood in terms of likelihoods for data sets that have resulted from one fewer
evolutionary event. In principle, recursive evaluation of these equations, as in an
earlier paper by Griffiths [23], will yield the desired likelihood. However, the re-
cursion expands rapidly, and one must therefore use some approximate method of
evaluating it. Griffiths and Tavaré [20, 21, 22] choose sample paths down through
the recursion randomly. The great advantages of this method are that the com-
putations are rapid, and each such sample path is independent of all the others.
By contrast, our samples are autocorrelated, leading to serious problems know-
ing how long to continue the sampling. In each of our samples, the likelihood of
a tree must be computed. Even if parts of the computation can be re-used, this
is much more effort than is needed for their method.

Each step in their sampling goes back one level in the recursion, and amounts
to a decision as to what the next most recent event in the genealogy is. The
sequence of choices that Griffiths and Tavaré make corresponds to a sequence
of events in evolution. Going backwards in time, their events are mutations and
coalescences, plus choices of the ancestral nucleotides at each site. Figure 4 shows
such a history of events leading to a set of four DNA sequences. It corresponds
to one path through their recursion. Note the difference between such a history
(H) and the genealogy (G) that we sample. Our genealogy has branch lengths;
theirs does not, at least in the simplest case. They specify the place of occurrence
of each mutation, while our likelihoods must sum over all possible placements of
mutations on the tree. Nevertheless, we can regard their method as Monte Carlo
integration. We can make an equation analogous to our equation 3.2:

L = Prob(D|Θ) =
∑

H

Prob(D|H) Prob(H|Θ),(7.9)

where H is a history of events, corresponding to a sequence of choices in Griffiths
and Tavaré’s recursion. The histories that they sample have the property that
they must always lead to the observed sequences. Thus Prob(D|H) is, trivially,
always 1. The term Prob(H|Θ) is simply the product of probabilities of the
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CATTAACGTCG
CATGAACGTCG

CCTTAACGTCG
CATGAACGTCG

Lineages 1 and 3 coalesce

Lineages 1 and 2 coalesce

Lineages 2 and 4 coalesce

CATTAACGTCG Started with this sequence

Site 2 in lineage 2 has mutated A−>C

Site 4 in lineage 1 has mutated T−>G

Fig. 4. A history of mutation, coalescences, and ancestral nucleotide choices that could result
in a given set of four sequences. Such histories are, in effect, what Griffiths and Tavaré’s
method samples. The events are described from a point of view looking backwards in time from
the present.
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individual events in H. In the history shown in Figure 4, the most recent event
could have been a mutation in any of the 11 sites in any of the four sequences, and
each could have come from any of three other nucleotides. The particular event
that is shown is a coalescence. There are only two sequences (1 and 3) that are
identical, and thus could have coalesced at this point. The rate of coalescence for
this pair will be 1/(2Ne). The next event is a mutation. If we use, for simplicity, a
symmetric Jukes-Cantor model of evolution, the rate of occurrence of a particular
mutation from C to A at a particular site will be µ/3, where µ is the total
mutation rate per site.

Consider all possible histories H, those that lead to the observed sequences
as well as those that do not. As the most recent event, there are 4 × 11 × 3
possible mutations, and 4 × 3/2 possible coalescences. The fraction of this
probability contributed by the most recent coalescence in Figure 4 is then
(1/(2Ne))/ (6/(2Ne) + 44µ), which turns out to be 1/(6 + 22Θ). Continuing
in this fashion we can calculate the probability Prob(H|Θ) of the particular
sequence of events in Figure 4 to be

(
1

6 + 22Θ

) (
Θ

18 + 99Θ

) (
Θ

18 + 99Θ

) (
2

6 + 33Θ

) (
1

1 + 11Θ

) (
1
4

)11

.

The last term is the probability that the initial DNA sequence is as shown in
Figure 4. In effect what Griffiths and Tavaré do is to sum over all such histories,
adding up this quantity for all those that lead to the observed data.

Griffiths and Tavaré at each stage are considering all possible most recent
events that could have led to the observed sequences. They use importance sam-
pling, by sampling at each stage from among the possible events in proportion
to their rate of occurrence. Thus at the first stage in the above calculation,
they choose among the one possible coalescence and the 33 possible mutations
in proportion to the contributions each would make to the numerator (in that
case 1/(2Ne) versus µ/3). This needs the usual importance sampling correction.
Their sampling is done, as ours is too, at a trial value Θ0. Suppose that f is
the probability Prob(H|Θ), unconditioned on the data, and h is the probability
for the distribution from which we sample instead. The importance sampling
correction is

L(Θ) = Ef [Prob(D|H)] = Eh

[
f

h
Prob(D|H)

]
(7.10)

and since for h we always have Prob(D|H) = 1, the likelihood is just the expec-
tation over h of f/h.

A history H consists of a series of choices. Suppose that history Hi has at
stage j a series of possibilities, with the terms of the Griffiths/Tavaré recursion
being the aijk(Θ0). Suppose that one that is actually chosen in history Hi has
term bij(Θ0). Then the probability of having taken this choice is

bij(Θ0)∑
k aijk(Θ0)

(7.11)
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and the probability of the history is the product of this ratio over all j, the
number of these depending on the number of events in history Hi. This is the
expression for h. The distribution f is similar except that it has Θ in place of
Θ0, and a wider range of possible events, including those which conflict with the
data. The full set of events at stage j in this distribution we call the cijk(Θ).

We end up with

L(Θ) = Eh





(
Πjbij(Θ)

Πj(
∑

k
cijk(Θ))

)

(
Πjbij(Θ0)

Πj(
∑

k
aijk(Θ0))

)



 = Eh

[
Πj

bij(Θ)
bij(Θ0)

∑
k aijk(Θ0)∑
k cijk(Θ)

]
(7.12)

Griffiths and Tavaré’s method consists of sampling from h to approximate this
expectation by averaging the ratio on the right. A careful reading of their pa-
pers will show that the above expression is precisely what they compute. Thus
their method too can be considered a Monte Carlo integration method with an
importance function.

Given the independence of their samples, and the rapidity with which they can
compute them, one might expect their method to be unequivocally superior to
ours. We are, after all, burdened by more computation and autocorrelated sam-
ples. The difficulty with their method is that the distribution h from which they
sample does not sample from the histories in proportion to their contribution
to the likelihood. There is thus some wasted effort. By contrast our Metropolis-
Hastings sampling is supposed to sample from genealogies in proportion to their
contribution to the likelihood. We thus have reason to hope that our method
might do better in some cases. The problem is most easily seen when considering
how Griffiths and Tavaré’s method will handle two DNA sequences. If those se-
quences happen to differ by (say) 2 bases, the mutational events that are sampled
will include not only the precise changes needed to make the two sequences iden-
tical, but also all other changes in all other sites. Thus a great deal of sampling
may be needed to sample from the events that contribute most of the likelihood.
Griffiths and Tavaré [22] have worried aloud about this very issue.

8. Population growth. The model of an isolated population of constant
size can be extended by allowing the population to grow exponentially. Griffiths
and Tavaré [20] have done so, and so have we [24]. Our program FLUCTUATE is
currently in distribution. In a population of effective size Ne(t) with k lineages,
the rate of coalescence is k(k−1)/(4Ne(t)). If the effective population size grows
exponentially at rate r, then when t is the time back from the present (“dual
time”),

Ne(t) = e−rtNe(0)(8.13)

Taking this into account in the time to coalescence, that density function is [24]

f(t) = e
[
− k(k−1)

4Ne(0)r (ert−1)
]
ert 2

4Ne(0)
.(8.14)
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This can be used to make a counterpart to equation 3.1 straightforwardly. Grif-
fiths and Tavaré [20] have used this for joint likelihood inference of the current
value of Θ and the growth rate. We have more recently produced a Metropolis-
Hastings algorithm [24] for a similar model.

Once the mutation rate µ is introduced and the branch lengths of the ge-
nealogical trees rescaled in units of expected mutations per site, the parameters
of the likelihood turn out to be the current value of 4Ne(0)µ, called Θ, and the
growth rate per unit branch length, which is g = r/µ. The likelihood surfaces in
these parameters usually contain long, narrow ridges. At any given value of g,
the estimation of Θ is reasonably accurate, but there is usually a long, narrow,
slightly curving ridge whose top is nearly flat. It runs nearly parallel to the g
axis, but curving gradually upwards as higher values of g are reached.

There turns out to be surprisingly little power to estimate g, except in cases
where the true value of g is large. Even more surprising is the strong bias in
the estimate of g. When data sets are generated from a model that has no
population growth, they much more often cause us to estimate a large positive
g than a negative g. The behavior is so startling as to make us wonder whether
it simply be the result of a program bug.

We can verify that the bias is real by using (8.12), and considering the case
of a sample of size 2 (n = 2). Suppose that we had very long, nonrecombining
sequences. That would allow us to make a precise estimate of the rescaled time
T = µt to coalescence. The likelihood function can be written in terms of g and
Θ = 4Ne(0)µ.

Prob(T |Θ, g) = e[−
2

Θg (egT−1)]egT 2
Θ

.(8.15)

In the case of a sample of size 2, let us assume that Θ is known, and set in (8.13)
to its true value, and that we are estimating g. There is no explicit formula
solving for the maximum likelihood estimate ĝ in terms of T , but the likelihood
can be maximized numerically. Now imagine a population whose true growth
rate is zero, and whose value of Θ is known to be 1. The scaled coalescent time
T for sample size 2 will be distributed exponentially with mean 0.5.

In Figure 5, the maximum likelihood estimate ĝ is shown for quantiles of that
distribution. It is striking that 87% of the time the estimate is positive, and very
strongly positive for small coalescent times (below 0.08 the curve is too high to
fit onto this figure). The other 13% of the time the estimate is negative, though
only moderately so. The bias in ĝ can be seen: it is the average height of the
curve, which is strongly positive. Note that the growth rate scale means that
g = 20 implies growth of the population by a factor of e10 during the expected
time for two samples to coalesce. Even at the median of the coalescence times,
the bias implies that we infer growth by a factor of e2.166 during the average
coalescence time. As our Metropolis-Hastings algorithm is not used here, this
calculation is an independent check of the reality of the bias.

This bias sounds like a serious problem for Monte Carlo integration methods.
It is, but we are convinced that it is an equally serious problem for all other
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Fig. 5. Estimates of growth rate for n = 2 in a data set with a large number of sites, so that
coalescence time can be estimated accurately. For a case where Θ is known and the true growth
rate is 0, the estimates for different quantiles of the coalescence time are shown. A large bias
toward inferring growth is apparent.
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methods. However, although the point estimates are biased, if we make interval
estimates using the usual chi-square approximation to the distribution of the
likelihood ratio, accepting all values of g whose log-likelihood is within 3 units
of the peak (in the more general case where two parameters, g and Θ, are being
estimated), the true value of 0 is within the interval almost 95% of the time.
In this case (S. Tavaré, pers. comm.) the chi-square distribution is of dubious
propriety, as it has an asymptotic justification but is being used on data from a
single locus. Nevertheless, the interval based on it seems to behave appropriately.
In addition, the bias becomes much smaller as we add data from more loci [24].

9. Migration. We can also extend the model to allow for multiple popula-
tions exchanging migrants. This has been done by Nath and Griffiths [25], who
estimate the migration rates for populations whose values of Θ are known. We
have [26] extended our Metropolis-Hastings method to a two-population case,
to estimate the two values of Θ and two migration rates. This seems to have
advantages over methods using statistics like FST , as those cannot estimate all
four parameters independently. An extension to n populations is in progress.

10. Sequential Sampling. In studies of ancient DNA, we have samples
that are not contemporaneous. In studies of the course of viral infection in a
patient (as in HIV) one may also have sequential samples. The coalescent like-
lihood approach is readily adapted to such cases [27]. Suppose that we have a
genealogical tree G∗ whose branch lengths are actual times, with some tips not
contemporaneous. Let the generation time of the organism be τ . As one proceeds
down the tree, there are two possible events, the entry of a new sample (which
has probability 1 at certain known times) or a coalescence. In place of equation
3.1, we have a product of terms, the j-th of which is either

2
4Ne

exp
[
−kj(kj − 1)

4Ne

uj

τ

]
(10.16)

or

exp
[
−kj(kj − 1)

4Ne

uj

τ

]
(10.17)

depending on whether there is a coalescence or a new sample at the bottom end
of interval j. Note that kj is the number of lineages that exist in the genealogy
during interval j. Note also that the chronological lengths of the interval have
been divided by the generation time to convert them into generation times. The
probability of the data given G∗ also needs a conversion: it depends on the
product of the per-generation mutation rate per site, µ and the generation time
elapsed, which is t/τ .

The result is that we can restate equation 3.2 as

Prob (D|Neτ, µ/τ) =
∫

G∗
f(G∗|Neτ) Prob(D|G∗, µ/τ).(10.18)



18 J. Felsenstein, M. K. Kuhner, J. Yamato, and P. Beerli

so that the two parameters that can be estimated are Neτ and µ/τ . This means
that if we know the generation time τ we can estimate Ne and µ separately.
Alternatively if (for example) we know µ, we can estimate Ne as well as the
generation time τ . Note that the integration over G∗ would involve all possible
labelled histories and coalescent times, but would not alter the times at which
the samples were taken, these being assumed known.

11. Recombination. All of the above cases involve sequences with no re-
combination. They are thus appropriate for mitochondrial DNA but of dubious
value in the nuclear genome. For this reason it has been of great interest to
everyone involved with coalescent likelihood methods to have a way of dealing
with recombination. As usual, we have come in second in the race, as Griffiths
and Marjoram [28] have an algorithm that infers the likelihood of a sample
with two parameters, 4Neµ and 4Nec, where c is the recombination fraction per
site. Their method requires substantial computation to adequately sample the
histories. Their method makes use of an “ancestral recombination graph” [29]
originally described by Hudson [30]. This shows coalescences and recombination
events. The latter branch as one goes rootwards, and at each such branching one
needs to specify which sites take each of the two routes.

We have also produced a program for inferring these two parameters,
[manuscript in preparation]. Although the Metropolis-Hastings approach helps
concentrate the sampling on the relevant genealogies, the number of these is so
large that the computation is still slow. Figure 6 shows contours of a likelihood
surface produced in one of our runs. There are serious problems ahead, as we
need to know how long to run the Markov chains to get an accurate answer, and
this is generally unknown. However there are also opportunities. One involves
using these methods to place a firm likelihood foundation under the widely used
genetic mapping method known as linkage disequilibrium mapping. A start has
been made on this by Rannala and Slatkin [31] and Graham and Thompson
[32]; our methods can be used to treat the problem more generally.

12. Natural Selection. Until recently it was assumed by everyone that
one could not specify the coalescent for sequences that were under natural se-
lection. Only some special cases could be solved, for cases of extreme selection
[33, 34, 35]. Recently Neuhauser and Krone [36, 37] made major inroads into the
problem, in what are perhaps the best papers on the coalescent since Kingman.
They defined a diagram that branches both downward and upward. Unlike the
similar diagrams that are produced in cases of recombination, these do not have
different alleles following different loops. Instead information flowing upward on
the genealogical graph can only pass through certain branches if the genotype
contains one of the selected alleles. In the case of recombination, at each site
the graph is a tree, although not the same tree at all sites. In the Neuhauser-
Krone “ancestral selection graph” the loops are rather more serious. If one tries
to compute Prob(D|G) on them, likelihood must be propagated simultaneously,
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Fig. 6. Contours of the likelihood surface from a single run of a the RECOMBINE Metropolis-
Hastings sampler with recombination on simulated data. The axes are Θ = 4Neµ and the
recombination parameter c/µ. The contours shown are 1, 2, 3, . . . units of log-likelihood below
the peak. The true values of the parameters are shown by the dashed lines. In this run the value
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log-likelihood units below the peak, which defines their approximate

confidence limits.
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not independently, around both sides of a loop. However, they were able to define
a recursion system that could be evaluated by Griffiths and Tavaré’s method.

Neuhauser and Krone’s work is an enormous and stimulating advance. But it
seems ill adapted to our Metropolis-Hastings approach, since when the selection
coefficient favoring haploid genotype A1 over genotype A2 is s, for moderate
values of 2Nes the number of loops in the ancestral selection graph can be-
come large. Stimulated by it, J.F. has started work on a different method, which
involves carrying out Metropolis-Hastings simulation of the frequencies of the
selected alleles, as well as the coalescent of other alleles within those alleles, and
the “migration” between them that is caused by mutation and recombination.
There are no results to report yet.

13. Software Distribution Our package LAMARC (which stands for Like-
lihood Analysis by Metropolis Algorithm for Random Coalescents) is available
free from its Web site:
http://evolution.genetics.washington.edu/lamarc.html
as C source code plus PowerMac and Windows executables. It is readily com-
piled on workstation C compilers (except for the cc compiler on SunOS systems).
As of this writing four programs were in distribution: COALESCE, which analyzes
a single population of constant size, FLUCTUATE, which analyzes exponentially
growing single populations, MIGRATE, which analyzes two populations exchang-
ing migrants, and RECOMBINE, which analyzes a single population of constant size
with recombination. More programs and more features will probably be available
by the time you read this.

14. An Object-Oriented Fantasy. Even if we could solve some of the
problems of how long to run the Markov Chains, the sampling approach has one
other serious problem. We like to call it “the 28 programs problem”. Each one
of these Markov Chain Monte Carlo programs is enormously difficult to write.
It takes each of us about 2 years to write and debug one of them. And yet, the
present programs are highly limited. We have programs that add one complica-
tion (population growth, migration, recombination) but do not combine these in
the same program. And yet there are more complications (such as natural selec-
tion, speciation, and gene conversion) that need to be considered. Any user may
want to pick some particular combination of, say, 8 complications. Do we need
to resign ourselves to spending the next 500 years writing all possible programs?

There is one way out. Object-oriented programming methods (such as are
embodied in C++, Objective C and Java) allow a program to self-assemble in
response to a user’s requirements. We therefore intend to try to create such an
environment. The user would select which combination of evolutionary forces,
historical events, genetic situations, and population structure were needed. The
program would then use only those classes and subclasses needed to run that
particular combination. Thus more like 8 programs than 28 need to be written.
The issue of chain length remains, and we as yet have no experience with the
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serious issue of user interface – how do we represent the results of runs that have
many parameters, for example?

Nevertheless one may fantasize about an “evolutionary genetics black box”.
The user puts in the data and the model, and out come likelihood inferences
about the parameters. One still needs to know population genetic theory, of
course, to comprehend the model. But a large fraction of the kind of work that
has filled theoretical journals in population genetics may become obsolete if this
fantasy can be realized. Many papers start with a theoretical model, pose the
question of what is the expected value of some statistic (such as the probability
of monomorphism, or of fixed differences between populations, or the variance of
heterozygosity), and after much blood, sweat, and tears arrive at a power series,
which usually remains unused by those with data. We may hope that this era
can be succeeded by one where the same effort can be redirected to formulating
the model and improving the computational methods.
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