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Abstract Evaluating marginal likelihood is the most critical and computationally expensive task, when
conducting Bayesian model averaging to quantify parametric and model uncertainties. The evaluation is
commonly done by using Laplace approximations to evaluate semianalytical expressions of the marginal
likelihood or by using Monte Carlo (MC) methods to evaluate arithmetic or harmonic mean of a joint likeli-
hood function. This study introduces a new MC method, i.e., thermodynamic integration, which has not
been attempted in environmental modeling. Instead of using samples only from prior parameter space (as
in arithmetic mean evaluation) or posterior parameter space (as in harmonic mean evaluation), the ther-
modynamic integration method uses samples generated gradually from the prior to posterior parameter
space. This is done through a path sampling that conducts Markov chain Monte Carlo simulation with dif-
ferent power coefficient values applied to the joint likelihood function. The thermodynamic integration
method is evaluated using three analytical functions by comparing the method with two variants of the
Laplace approximation method and three MC methods, including the nested sampling method that is
recently introduced into environmental modeling. The thermodynamic integration method outperforms
the other methods in terms of their accuracy, convergence, and consistency. The thermodynamic integra-
tion method is also applied to a synthetic case of groundwater modeling with four alternative models. The
application shows that model probabilities obtained using the thermodynamic integration method
improves predictive performance of Bayesian model averaging. The thermodynamic integration method is
mathematically rigorous, and its MC implementation is computationally general for a wide range of envi-
ronmental problems.

1. Introduction

Multimodel analysis has been used widely in environmental modeling for quantification of model uncer-
tainty, which arises when multiple conceptualizations and mathematical descriptions are considered to be
plausible for simulating an environmental system. By evaluating multiple models simultaneously, multimo-
del analysis not only addresses model uncertainty but also provides a quantitative framework to quantify
model uncertainty. This is done by aggregating model predictions and associated uncertainty from the
competing models in a model averaging process. Among various methods of multimodel analysis, this
paper is focused on the Bayesian Model Averaging (BMA) method. Consider a set of models, M5

M1; . . .;MKð Þ and denote D as a quantity to be predicted by model Mk based on available data D. The
weighted average estimate of the probability density function of D is

p Dð jDÞ5
XK

k51

p Dð jMk ;DÞp Mkð jDÞ; (1)

where p Mkð jDÞ is the posterior probability of model Mk. The posterior model probabilities add up to one,
and can be viewed as model averaging weight. The posterior probability for model Mk is given by Bayes’
rule [Hoeting et al., 1999],
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pðMk jDÞ5
pðDjMkÞpðMkÞPK

l51
pðDjMlÞpðMlÞ

; (2)

where p Mkð Þ is prior probability and

p Dð jMkÞ5
ð

p Dð jhk ;MkÞp hkð jMkÞdhk (3)

is marginal likelihood of model Mk , hk is the vector of parameters associated with model Mk , p hkð jMkÞ is the
prior density of hk under model Mk , p Dð jhk ;MkÞ is the joint likelihood of model Mk and its parameters hk .
The marginal likelihood function in equation (3) is one of the most critical variables in BMA, and evaluating
it numerically is the focus of this paper.

The marginal likelihood, also called integrated likelihood or Bayesian evidence, measures overall model fit, i.e.,
to what extent that the data, D, can be simulated by model Mk. The measure is not based on a single parame-
ter sample, but based on the model fit averaged over the entire parameter space, which corresponds to the
integration of p Dð jhk ;MkÞ with respect to the prior parameter density. The marginal likelihood is important to
model selection. In the context of Bayesian factor [Kass and Raftery, 1995], models with higher values of mar-
ginal likelihood are considered to be more plausible. This concept was used by Marshall et al. [2005] for hydro-
logic model selection. The marginal likelihood is also used in many other areas of environmental modeling.
For example, it was used by Schoups et al. [2008] and Schoups and Vrugt [2011] to evaluate the appropriate
level of model complexity. When the level of model complexity (in terms of model parameter and structure)
increases but the marginal likelihood does not improve, the increased level of complexity is not justified. Simi-
larly, the marginal likelihood has been used for inverse modeling [Elsheikh et al., 2013] and data assimilation
[Vrugt et al., 2013]. It is therefore necessary to accurately and efficiently evaluate the marginal likelihood.

Analytical expressions of the marginal likelihood are only available under limited situations, e.g., with linear
models and Gaussian likelihood and prior [Sch€oniger et al., 2014]. Semianalytical expressions can be derived
by using the Laplace approximation method [Kass and Raftery, 1995; Friel and Wyse, 2012], and the expres-
sions are given in section 2. The expressions are semianalytical, because inverse modeling is needed to
obtain estimates of parameter, hk , using either maximum likelihood (ML) or maximum a posterior (MAP)
method. While the Laplace approximation methods have been widely used in groundwater modeling
[Neuman, 2003; Ye et al., 2004, 2008, 2010a,b; Lu et al., 2013; Tsai and Elshall, 2013; Elshall and Tsai, 2014;
Zhang et al., 2014], it is subjective to truncation error, and linearization of nonlinear models is always
needed during the inverse modeling. A comprehensive evaluation of the Laplace approximation methods
can be found in Sch€oniger et al. [2014].

Approximating the marginal likelihood using Monte Carlo (MC) methods has become popular [Kass and
Raftery, 1995; Han and Carlin, 2001; von Toussaint, 2011; Friel and Wyse, 2012; Vrugt et al., 2013]. The most
popular MC approximation used in groundwater modeling is to simply take the arithmetic mean of p
Dð jhk ;MkÞ evaluated for parameter samples obtained by various methods, e.g., generalized likelihood

uncertainty estimation methods [Rojas et al., 2008], method of anchored distributions [Rubin et al., 2010],
Markov chain Monte Carlo (MCMC) methods [Lu et al., 2011], maximum likelihood methods [Neuman et al.,
2012; Lu et al., 2012b], and ensemble Kalman filter methods [Xue and Zhang, 2014]. However, it is well
known that calculating arithmetic mean suffers from slow convergence. In addition, the arithmetic mean
always underestimates the marginal likelihood, if the parameter samples are generated from a prior param-
eter space that is high dimensional and has wide range. The reason for the underestimation is that, the joint
likelihood, p Dð jhk ;MkÞ, is small for most samples generated from the prior space. A solution to this problem
is to use the harmonic mean evaluated by using MCMC parameter samples from the posterior parameter
space [Kass and Raftery, 1995]. It however has been found that the harmonic mean may overestimate the
marginal likelihood, because the MCMC samples have high joint likelihood. In addition, the harmonic mean
is unstable, because its evaluation may be dominated by parameter samples with small values of the joint
likelihood. To resolve this issue raised by using only prior or posterior samples, Newton and Raftery [1994]
developed the stabilized harmonic mean method that uses importance sampling to generate parameter
samples from a mixture of prior and posterior spaces. The mixture however is subjective and difficult to be
determined; the coefficient used for the mixture always needs to be calibrated. A similar method was
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developed by Chib and Jeliazkov [2001] and used by Marshall et al. [2005] for hydrologic modeling. This
method uses both MCMC samples and samples generated from the MCMC proposal distributions; the pro-
posal samples are not limited to the prior and posterior spaces. The effort of developing more advanced
methods to stabilize harmonic mean is on-going [Raftery et al., 2007].

This study is focused on two MC approaches that do not use harmonic mean, and they are the thermodynamic
integration method [Gelman and Meng, 1998; Neal, 2000; Lartillot and Philippe, 2006; Friel and Pettitt, 2008] and
the nested sampling method [Skilling, 2004, 2006]. Previous studies have shown that the two approaches are
more suitable than other MC approaches for evaluating the marginal likelihood. Beerli and Palczewski [2010]
showed that thermodynamic integration method gives considerably better estimates than the stabilized har-
monic mean does. Sch€oniger et al. [2014] showed that nested sampling method outperforms the Laplace
approximation methods. The thermodynamic integration and nested sampling methods have a common char-
acteristic that is to convert the multivariate integral of equation (3) into a one-dimensional integral. For thermo-
dynamic integration, the one-dimensional integral is with respect to a power coefficient applied to the joint
likelihood; for nest sampling, the one-dimensional integral is with respect to an element of prior mass (i.e., inte-
gration of prior within a region). More details of the conversion are given in section 2. While nested sampling
has been recently used for groundwater modeling [Elsheikh et al., 2013; Sch€oniger et al., 2014], to the best of our
knowledge, thermodynamic integration has not been attempted, except the work of Schoups and Vrugt [2011].
One objective of this study is to introduce the thermodynamic integration method into groundwater modeling
for model uncertainty quantification.

Another objective of this study is to compare the commonly used numerical methods, including Laplace
approximation, arithmetic mean, harmonic mean, nested sampling, and thermodynamic integration, in terms
their accuracy, convergence, and consistency. There have been only few studies that compare these methods
[Sch€oniger et al., 2014; Friel and Wyse, 2012]. Since these numerical methods are widely used in environmental
modeling, the comparison can provide direct insights for various research areas of environmental modeling.
There have been other MC methods for evaluating the marginal likelihood, such as those using Savage-
Dickey density ratio [Morey et al., 2011], Lebesgue integration theory [Weinberg, 2012], and stepping-stone
method [Xie et al., 2011]. However, including these methods into the numerical comparison is beyond the
scope of this study. A special attention is paid in this study to compare thermodynamic integration with
nested sampling, which has not been reported in the literature. During the numerical comparison, it is realized
that the Metropolis-Hasting MCMC techniques used in Elsheikh et al. [2013] for implementing nested sampling
are standard and do not have advanced features of the DREAM code [Vrugt et al., 2009; Laloy and Vrugt, 2012]
used to implement thermodynamic integration. Three modifications are made in this study to improve the
sampling efficiency, such as using block and component-wise updating and randomized step-size reduction
factor to generate proposal samples. More details of the modifications are given in section 2.

The numerical comparison is conducted using the following three analytical functions: (1) a linear function with
two parameter, (2) a nonlinear function with two parameters whose distributions are multimodal, and (3) a non-
linear function with 10 parameters and sharp likelihood surface. Three evaluation criteria are used in the numer-
ical comparison, i.e., accuracy, convergence, consistency, and computational cost of the numerical methods are
also considered in this study. While the thermodynamic integration method may not be the best one with
respect to the individual criteria and for a single function, it overall outperforms the other methods, especially
for the third analytical function that is more representative for environmental modeling. The thermodynamic
integration method is also applied to a synthetic case of groundwater modeling. The synthetic case considers
four alternative models postulated for different conceptualizations of a confining layer, a commonly encoun-
tered conceptual model uncertainty in groundwater modeling [Lemke and Cypher, 2010]. The four models have
a relatively large number of parameters, ranging from 12 to 21, which is common in groundwater modeling.
The groundwater modeling shows that using the model probabilities given by thermodynamic integration
improves BMA predictive performance (measured for simulating streamflow change due to pumping) com-
pared to using the model probabilities given by Laplace approximation, arithmetic mean, and harmonic mean.

2. Methodologies

This section starts with a brief description of the Laplace approximation method, followed by the definitions
of arithmetic mean estimator (AME), harmonic mean estimator (HME), thermodynamic integration estimator
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(TIE), and nested sampling estimator (NSE) of the marginal likelihood. Since these methods are applied to
individual models, the subscript k of model Mk drops hereinafter for the convenience of mathematical
notation.

2.1. Laplace Approximations
There are two variants of the Laplace approximation method, depending on how the Taylor series expan-
sion is conducted for the integrand of equation (3) [Kass and Raftery, 1995; Sch€oniger et al., 2014]. The first
one rewrites equation (3) as

p Dð jMÞ5
ð

exp ln p Dð jh;MÞp hð jM½ Þ�dh; (4)

and then expands ln p Dð jh;MÞp hð jMð ÞÞ in a Taylor series around the parameter estimate, ~h, that maximizes
ln p Dð jh;MÞp hð jMð ÞÞ. After truncating all terms of the Taylor series that have the orders of ~h higher than
two, the quadratic Taylor series expansion is

ln pðDjh;MÞ � ln pðDj~h;MÞ1ln p ~h
� ��MÞ2 1

2
ðh2~hÞT FðDj~h;MÞðh2~hÞ; (5)

where F is the Fisher information matrix and its element is defined as

FijðDjh;MÞ5@
2ln ðpðDjh;MÞpðhjMÞÞ

@hi@hj

���
h5~h

(6)

Substituting equation (5) into equation (4) leads to the semianalytical expression of the marginal likelihood,

p Dð jMÞ � 2p
N
2 jF Dð j~h;MÞj2

1
2p Dð j~h;MÞp ~h

� ��MÞ; (7)

where N is the dimension of model parameter, h. Equation (7) is referred to as Laplace-MAP, because the
expansion is for the maximum a posterior (MAP) estimate, ~h, of model parameters [Carrera and Neuman,
1986].

The other variant of the Laplace approximation is similar but expands first ln p Dð jh;MÞ and then ln p hð jMÞ
in a Taylor series around the parameter estimate, ĥ, that maximizes ln p Dð jh;MÞ. The corresponding semian-
alytical expression of the marginal likelihood is [Kass and Raftery, 1995]

p Dð jMÞ � 2p
N
2 jF Dð jĥ;MÞj2

1
2p Dð jĥ;MÞp ĥ

� ���M�; (8)

where the elements of the Fisher information matrix are defined as FijðDjh;MÞ5 @2ln p Dð jh;MÞ
@hi@hj

jh5ĥ . Equation (8)
is referred to as Laplace-MLE, because the expansion is for the maximum likelihood (ML) estimate, ĥ, of
model parameters. For a linear model, Laplace-MAP is accurate because the terms in the Taylor series with
order higher than two are zero. This is not the case for Laplace-MLE, because ĥ may not maximize ln p hð jMÞ.
In addition, the difference in the Fisher information matrix between Laplace-MAP and Laplace-MLE may
also impact the accuracy of Laplace-MLE. Theoretically speaking, Laplace-MAP is more accurate than
Laplace-MLE, when the prior is informative relative to the likelihood. A detailed comparison of the two esti-
mators can be found in Sch€oniger et al. [2014].

2.2. Arithmetic Mean Estimator (AME) and Harmonic Mean Estimator (HME)
Following Kass and Raftery [1995], AME is defined as

p̂AMEðDjMÞ5
1
m

Xm

i51

pðDjhðiÞprior ;MÞ; (9)

where m is the number of parameter samples hðiÞprior from the prior distribution, p hð jMÞ. While AME is con-
ceptually straightforward, it is computationally inefficient, especially for problems with a large number of
parameters. In addition, if the posterior parameter distribution is significantly narrower than the prior
parameter distribution, the values of joint likelihood, p Dð jh;MÞ, are small for the prior samples, hðiÞprior . This
may lead to large variance and/or underestimation of the marginal likelihood, unless a large number of
prior samples are used.
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HME is defined as [Kass and Raftery, 1995]

p̂HMEðDjMÞ5
1
m

Xm

i51

pðDjhðiÞposterior ;MÞ21

( )21

; (10)

where hðiÞposterior is a parameter sample from its posterior distribution, and can be obtained using MCMC
methods. Equation (10) can be derived either from the angle of importance sampling [Kass and Raftery,
1995] or based on the identity,

1
p Dð jMÞ5

ð
1

p Dð jh;MÞp hð jD;MÞdh; (11)

which is derived by substituting the equation of posterior parameter distribution,

pðhjD;MÞ5 pðDjh;MÞpðhjMÞ
p Dð jMÞ ; (12)

into equation (11). Equation (11) differs from equation (3) in that the former is the mean of p Dð jh;MÞ21

with respect to the posterior but the latter is the mean of p Dð jh;MÞ with respect to the prior. While HME is
computationally more efficient than AME, it may overestimate the marginal likelihood, because the values
of pðDjhðiÞposterior ;MÞ are large for the posterior samples, especially when the posterior is significantly narrower
than the prior. In addition, HME suffers from instability, because a posterior sample with a small value of
pðDjhðiÞposterior ;MÞ can dominates the calculation. This problem cannot be resolved by using a large number
of posterior samples, as shown in the numerical examples below.

2.3. Thermodynamic Integration Estimator (TIE)
To resolve the problems above about AME and HME, a new sampling method is needed, and the key idea is
to avoid sampling solely in the prior or posterior parameter space. This can be achieved by TIE, which is also
known as path sampling [Gelman and Meng, 1998; Neal, 2000]. TIE is based on the power posterior defined
for any 0 � b � 1 as

qbðhÞ5pðDjh;MÞbpðhjMÞ; (13)

which is a continuous and differentiable path in the space of unnormalized densities, with q0ðhÞ5pðhjMÞ
and q1ðhÞ5pðDjh;MÞpðhjMÞ. Note that h is implicitly a function of b. For b 5 0 and b 5 1, TIE samples the
prior and posterior parameter space, respectively. For 0 < b < 1, the likelihood surface is smoothed out to
explore the posterior parameter space specific to b. The TIE derivation is not straightforward, because it
requires defining two interim variables that do not have physical or statistical meaning but only facilitate
the derivation. Following Lartillot and Philippe [2006], define the intermediate variable, pb and Zb , as

pbðhÞ5
1

Zb
qbðhÞ; (14)

and

Zb5

ð
qbðhÞdh: (15)

Taking the derivative of ln Zb with respect to b leads to

@ln Zb

@b
5

1
Zb

@Zb

@b
5

1
Zb

ð
@qbðhÞ
@b

dh

5

ð
1

qbðhÞ
@qbðhÞ
@b

qbðhÞ
Zb

dh5

ð
@ln qbðhÞ

@b
pbðhÞdh

5Eh
@ln qbðhÞ

@b

� �
;

(16)

where Eh denotes the expectation with respect to pbðhÞ. Integrating (16) with respect to b over [0, 1] yields
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ln Z12ln Z05

ð1

0
Eh

@ln qbðhÞ
@b

� �
db: (17)

Considering that

Z05

ð
q0ðhÞdh5

ð
pðhjMÞdh51;

Z15

ð
q1ðhÞdh5

ð
pðDjh;MÞpðhjMÞdh5pðDjMÞ;

(18)

equation (17) becomes

ln pðDjMÞ5
ð1

0
Eh

@ln qbðhÞ
@b

� �
db; (19)

and it leads to

pðDjMÞ5exp
ð1

0
Eh

@ln qbðhÞ
@b

� �
db

� �
: (20)

This is the key to TIE that converts the multivariate integral of equation (3) into the univariate integral with
respect to the scalar, b.

The next step is to derive the analytical expression of @ln qbðhÞ
@b . Considering that @ln qbðhÞ

@b 5 1
qbðhÞ

@qbðhÞ
@b and @qbðhÞ

@b

5pðDjh;MÞbln pðDjh;MÞpðhjMÞ by virtue of equation (13), we have

@ln qbðhÞ
@b

5
1

qbðhÞ
@qbðhÞ
@b

5
1

qbðhÞ
pðDjh;MÞbln pðDjh;MÞpðhjMÞ

5
1

qbðhÞ
qbðhÞln pðDjh;MÞ5ln pðDjh;MÞ:

(21)

Substituting (21) into (20) gives

pðDjMÞ5exp
ð1

0
Eh½ln pðDjh;MÞ�db

� �
: (22)

At this step, the two interim variables drop off from the evaluation. Equation (22) is a one-dimensional inte-
gral, and can be easily estimated using various quadrature rules. Using the simple composite trapezoidal
rule with discrete power coefficients, 05b1 < b2 . . . < bk < . . . bn51, TIE is obtained as

p̂TIEðDjMÞ5exp
Xn

k52

ðbk2bk21Þ
yk1yk21

2

" #
; (23)

where yk corresponding to power coefficient value bk is the average of log likelihood, ln pðDjhðiÞ;MÞ, i.e.,

yk5
1
m

Xm

i51

ln pbk
ðDjhðiÞ;MÞ: (24)

The above procedure is based on the annealing-melting integration. Another TIE derivation based on model-
switch integration is referred to Lartillot and Philippe [2006]. It should be noted that TIE outperforms AME and
HME only when the posterior is significantly narrower than the prior. In an extreme case that the posterior is
the same as the prior (e.g., when data does not update the prior), AME, HME, and TIE will be the same.

Below is a procedure of implementing TIE using MCMC:

Step 1: Determine the discrete power coefficient values, bk , which usually start with equal intervals for
0 � b � 1.

Step 2: Run MCMC with different bk values in parallel to obtain the corresponding parameter samples.

Step 3: Calculate yk corresponding to each bk using equation (24).

Step 4: Compute TIE using equation (23).

Step 5: If it is necessary to add more power coefficient values, go to Step 1. Otherwise, stop.

As shown in section 3, it is straightforward to determine the number and values of bk in an empirical man-
ner by increasing the number of bk gradually. TIE becomes more accurate when the number of bk increases,
and converges when the number is large enough.
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2.4. Nested Sampling Estimator (NSE)
Following Skilling [2006], NSE evaluates the marginal likelihood via

p Dð jMÞ5
ð

p Dð jh;MÞp hð jMÞdh5

ð
p Dð jh;MÞdX5

ð
L hjD;Mð ÞdX; (25)

where L hjD;Mð Þ5p Dð jh;MÞ denotes the joint likelihood function, and dX 5 p hð jMÞdh is an element of prior
mass. Define a cumulative prior mass

XðkÞ5
ð

LðhjD;MÞ>k

p hð jMÞdh; (26)

for the parameter values that satisfy the condition, L hjD;Mð Þ > k. Note that 0 � X � 1. As the restriction on
the joint likelihood become tighter as k increases, this condition allows exploring a ‘‘hard-edged likelihood-
constrained domain’’ (called by Skilling [2006]) evolving to higher likelihood values. Denote the inverse func-
tion of X(k) as p Dð jX;MÞ that satisfies p Dð jXðkÞ;MÞ5k. Substituting the inverse function into equation (25)
leads to a one-dimensional integral,

Np̂NSE Dð jMÞ5
ð1

0
pðDjX;MÞdX5

ð1

0
LðXjD;MÞdX: (27)

This is the key to NES that converts the multivariate integral of equation (3) into this univariate integral with
respect to X, which is equivalent to mapping the multidimensional parameter space into the one-
dimensional space of X. Unlike TIE that samples from the prior to the posterior parameter space by explor-
ing a ‘‘likelihood weighted space’’ called by Skilling [2006], NSE samples within the hard constraint, k, and
thus explores the hard-edged likelihood-constrained domain. This is the reason that NSE is in general com-
putationally more efficient than TIE. However, finding the hard-edged likelihood-constrained domain may
be difficult, especially for high-dimensional problems with wide parameter range and peaked joint likeli-
hood. Such a problem is presented in section 3, for which NSE implemented using the commonly used
Metropolis-Hasting algorithm [e.g., Elsheikh et al., 2013; Sch€oniger et al., 2014] fails to find the hard-edged
likelihood-constrained domain.

The one-dimensional integral in equation (27) can be evaluated using any quadrature rule,

p̂NSE Dð jMÞ5
XI

i51

wi LðXi jD;MÞ5
XI

i51

wiLi ; (28)

where I is the number of discrete Xi, and wi is a weight corresponding to Xi. Skilling [2006] denoted a right-
to-left sequence of Xi points as 0 < XI < � � � < X2 < X1 < 1, and suggested using the weight of wi5Xi212Xi

with X0 5 1. The Xi and Li values are unknown, and they are determined iteratively in the following proce-
dure [Skilling, 2006] based on equation (26):

Step 1: Construct an active set of size Nas with parameter samples generated from the prior distribution, cal-
culate for each sample its corresponding joint likelihood, and determine the smallest joint likelihood
denoted as Lworst, which is k in equation (26).

Step 2: Start a loop to evaluate equation (28) in two substeps.

Step 2.1: For the ith iteration, denote Lworst as Li, and then compute Xi5exp ð2i=NasÞ. Subsequently, evalu-
ate weight, wi5Xi212Xi , and then calculate wiLi in equation (28).

Step 2.2: Replace the parameter sample of Lworst in the active set with a new sample generated from the
prior. The new sample should satisfy the hard constraint, LðhjD;MÞ > Lworst . The sample of Lworst is removed
from the active set.

Step 3: Repeat Step 2 until reaching two user-specified termination criteria, whichever is reached first. The
two criteria are the maximum number of iterations (e.g., I5253Nas used in this study) and the desired accu-
racy of p̂NSE (e.g.,

PI
i51 wiLi2

PI21
i51 wiLi � 1025 used in this study).

Although the procedure is straightforward, from the theoretical point of view, how to evaluate Xi is still an
open question. Skilling [2006] acknowledged the uncertainty in the current way of evaluating Xi in Step 2.1.
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The existing practice of implementing NSE also has operation limitations, in particular for generating a new
sample in Step 2.2 to replace the parameter sample of Lworst in the current active set. Because of the hard
constraint, LðhjD;MÞ > Lworst , the random sample generation becomes computationally expensive when
Lworst becomes large as the algorithm proceeds. In other words, a large number of samples generated from
the prior are rejected, when the active set evolves to contain samples with high likelihood. To resolve this
problem, Elsheikh et al. [2013] provided a Metropolis-Hasting algorithm that starts a short Markov chain
from a sample picked from the active set, except the one with the lowest likelihood. A similar algorithm was
used in Sch€oniger et al. [2014].

This study makes three modifications on the Metropolis-Hasting algorithm described by Elsheikh et al.
[2013] on the aspect of generating proposal samples. The modifications however are minor, as they do not
substantially change the way of generating proposal samples. Given that MT-DREMA(ZS) [Laloy and Vrugt,
2012] is a more robust algorithm than the Metropolis-Hasting algorithm, it would be more ideal to use the
DREAM code for implementing NES, which however is beyond the scope of this study.

The first modification is to use the prior probability ratio, not the likelihood ratio, for the acceptance ratio,
as was done in Sch€oniger et al. [2014]. The reason for this change is to ensure that sufficient X values, espe-
cially small X values, are used in the nested sampling to avoid overestimation of the marginal likelihood
(equation (28)). When the likelihood ratio is used, it is observed that the likelihood evolves quickly to a high
value. The fast evolution may cause premature termination of the iteration in Step 2, because no more
higher likelihood can be found. Its consequence is insufficient construction of the one-dimensional integral
with respect to X and overestimation of the marginal likelihood. While using the prior probability ratio (e.g.,
sampling from the prior) decreases the sampling efficiency, NES is still the most computationally efficient
algorithm in comparison with other algorithms.

The second modification is related to proposing a new sample. In Elsheikh et al. [2013], a block-wise updat-
ing for the proposal distribution was implemented via

hnew5hold1dx; (29)

where hnew is proposed sample, hold is evolved sample, d is a user-specified step size, and x is a random
number following the standard normal distribution, i.e., x � N(0,1). While using this block-wise update can
be computationally more efficient, it may result in a high rejection rate, especially for high-dimensional
problems. At a cost of computational efficiency, this problem can be alleviated by using the component-
wise scheme to update each dimension independently while fixing other components. To gain computa-
tional efficiency without a high rejection rate, both block and component-wise update are used in this study
but in a random manner. Before selecting the update scheme, a random number is drawn from the uniform
distribution, U[0,1]. If the random number is larger than 0.5, the component-wise update is used; otherwise,
the block-wise update is used.

The third modification is to avoid premature termination, which can occur during the MCMC run, when all
proposed MCMC samples are rejected (because their likelihood values are smaller than Lworst) but the X
space has not been sufficiently explored. To avoid the premature termination, the MCMC simulation will
start over but with a smaller step size estimated via

dnew5aRdold; (30)

where a is a user-specified step-size reduction factor (less than one), and R � U[0,1] is a randomized step-
size reduction factor. While a is fixed for all the realizations of the new MCMC run, a random R value is used
in each realization. This helps find a new sample that satisfies the hard constrain on the joint likelihood
defined in equation (26).

3. Numerical Examples

The marginal likelihood is evaluated using Laplace-MAP, Laplace-MLE, AME, HME, TIE, and NSE for: (1) a
linear analytical function with two parameters, (2) a nonlinear analytical function with two parameters
whose distributions are multimodal, and (3) a nonlinear analytical function with 10 parameters whose
joint likelihood is highly peaked. The Laplace-MAP and Laplace-MLE methods are implemented using the
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commercial software, Mathe-
matica; AME is evaluated using
simple Monte Carlo simulation
that generates random para-
meter samples from prior para-
meter distributions directly; the
MCMC simulation needed by
HME and TIE is conducted
using MT-DREMA(ZS) [Laloy and
Vrugt, 2012]. The MCMC simula-
tion needed by NSE is based on
the Metropolis-Hasting algo-
rithm used by Elsheikh et al.
[2013] with the three modifica-
tions described in section 2.4.
The selection of discrete power
coefficient values for TIE and
tuning of NES (e.g., the size of
active set and use of random-
ized step-size reduction factor)
is demonstrated for the linear
analytical function as an
example.

For each of the three analytical function, accuracy of the numerical methods is evaluated by comparing
their results with reference values; the details of determining the reference values are given below. With
the reference values, the convergence of AME, HME, TIE, and NES is also compared by conducting tens of
millions of MC runs. Computational cost of each method needed for reaching convergence is discussed.
Consistency of AME, HME, TIE, and NES is evaluated by examining variability of their results of 10 repeated
runs.

Figure 1. Variation of yk (equation (24)) with bk (power coefficient in equation (13)) for
evaluating the thermodynamic integration estimator (TIE). The initial number of bk is 11
(red), 9 more values (green) are added between 0 and 0.1, 9 more values (blue) are added
between 0 and 0.01, and the final number is 38 (black).

Figure 2. (a) Estimated marginal likelihood, and (b) number of model executions for different sizes of active set used in the nested sam-
pling for the linear function. The proposal distribution based on x � N(0,1)r, where x is the random number used in equation (29), and r
indicates that the randomized step-size reduction factor, R, of equation (30) is used.
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Laplace-MLE, AME, HME, and TIE
are used for a synthetic case of
groundwater modeling to eval-
uate the numerical methods in
the context of groundwater
modeling. Four alternative
groundwater flow models are
considered in the synthetic case
corresponding to four different
descriptions of a confining
layer. For the four models, the
number of random parameters
range from 12 to 21, which are
moderately high but typical for
groundwater modeling. Due to
the lack of reference values for
the model probabilities, a pre-
dictive performance is con-
ducted to investigate practical
advantages of TIE. The MCMC
simulation needed by HME and
TIE is conducted using the

MCMC function of UCODE_2014 software recently developed by Lu et al. [2014] based on the DREAM code
of Vrugt et al. [2008, 2009].

3.1. Linear Analytical Function
The linear test function is

y5ax1m1e; (31)

where the true parameter values are a52 and m53. Twenty samples of y are first generated with
x5f1; 2; . . .; 20g, and subsequently corrupted using one realization of white noise, e, with mean zero and
variance r251. The joint likelihood function, pðDjh;MÞ, is Gaussian; with the conjugate priors of a � Nð2; 1Þ
and m � Nð3; 1Þ, the analytical solution of the marginal likelihood is evaluated using Mathematica. It how-
ever should be noted that analytical solutions are only available for special cases such as linear models and
Gaussian likelihood functions and priors [e.g., Sch€oniger et al., 2014]. Before discussing the results of estimat-
ing the marginal likelihood, we provide the detailed procedure of selecting the discrete power coefficient
values of TIE and the procedure for tuning NES. Because the procedure is similar for all the three cases, such
details are not provided for the other three cases.
3.1.1. Selecting TIE Discrete Power Coefficient Values
Since there has been no theoretical method for selecting the discrete power coefficient values, this is done
in an empirical but straightforward manner in this study. TIE accuracy heavily depends on the location and

number of the discrete power
coefficients. For example, using
the trapezoidal integration
given in equation (23) with 11
equally distributed b values,
b5f0; 0:1; 0:2; . . .; 1g, the TIE
estimate is 2:43310244, which
is an immense underestimation
in comparison with the refer-
ence value of 5.1194 3 10214

(the details of determining the
reference value are given in
section 3.1.3). On the other

Figure 3. Impacts of distributions (N(0,1), N(0,0.5), and U(0,1)) of x (in equation (29)) and
randomized step-size reduction factor, R (in equation (30)), on accuracy and consistency of
NSE estimates for the linear function. For the x axis label, when R is fixed at one, it is
denoted as nr, when random R is used, it is denoted as r.

Table 1. Numerical Estimates and Their Relative Errors for Calculating Marginal Likeli-
hood of a Linear Function and a Nonlinear Function, Each Having Two Parametersa

Method

Linear Function Nonlinear Function

Estimate Relative Error Estimate Relative Error

Reference 5.1194 3 10214 1.1667 3 10214

Laplace-MAP 5.1194 3 10214 0% 1.0478 3 10214 210.19%
Laplace-MLE 5.6485 3 10214 10.34% 1.0599 3 10214 29.15%
AME 5.1114 3 10214 20.16% 1.1669 3 10214 0.02%
HME 3.7138 3 10213 625.43% 2.1076 3 10224 2100%
TIE 5.1010 3 10214 20.36% 1.1682 3 10214 0.13%
NSE 5.0804 3 10214 20.76% 1.1684 3 10214 0.15%

aThe reference value is analytical for the linear function but numerical for the nonlin-
ear function.
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hand, using only five power coefficients,
b5f0; 0:001; 0:01; 0:1; 1g, the TIE esti-
mate is 2:88310215, only 1 order of mag-
nitude smaller than the reference value.
Therefore, the key to obtaining accurate
TIE is to determine the b values at the
important locations shown in the exam-
ple below.

Our practice of determining the b values
is to start with evenly distributed bk val-
ues and then examine the variation of yk

(used in equation (23)) with the bk values.
Extra bk values are added to the locations
where yk changes dramatically with bk. An
illustration is given in Figure 1. The figure
shows that, for the 11 uniform distributed
bk (red line), yk changes dramatically
between 0 and 0.1. Therefore, nine values
(green symbols) are added to this interval
with the smallest one being 0.01, which
improves TIE from 2:43310244 to
1:47310216. Since yk still changes dra-
matically between 0 and 0.01 (Figure 1),
nine values (blue symbols) are added to
this interval with the smallest one being
0.001, which improves TIE from 1:473

10216 to 4:93310214, only 3.79% smaller
than the reference value. Adding nine
extra bk values between 0.1 and 1 only
slightly improves the TIE accuracy from
4:93310214 to 5:10310214. Since this
result is only 0.36% less than the refer-
ence value, no more bk values are added.
As demonstrated in this procedure, while
the bk values are unknown, they can be
selected in a systematic way to obtain
accurate TIE. The rule of thumb is to add
more bk values near b50, where the
shape of yk always change dramatically.
Although using more bk values increases
computational cost, given that each bk is
independent, evaluating yk for each bk

can be done in parallel to improve com-
putational efficiency.
3.1.2. Tuning NSE
A total of four variables are tuned to
obtain efficient and accurate NSE esti-
mates. The first two are deterministic
parameters that do not vary when evalu-

ating NSE, and they are the size, Nas, of the active set (used in Step 1 described in section 2.4) and the num-
ber, NMCMC , of MCMC samples (used in Step 2.2 described in section 2.4). The number of MCMC samples
needs to be carefully selected for balancing efficiency and premature termination discussed in section 2.4.
Based on trials and errors, NMCMC510 3 Nas is determined. This is the number of model executions in each
MCMC simulation for determining Xi. Nas is the most important parameter for NSE, because it determines

Figure 4. (a) TIE-related MCMC samples of a and m for different b values, and
(b and c) marginal density functions of m and a based on analytical solution
and TIE-related MCMC samples for the linear function.
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the number of Xi used in NSE and thus NSE accuracy. As shown in Figure 2, a total six values of Nas are
considered; for each Nas, 50 repeated runs are conducted. Figure 2a plots the boxplots of the 50 NSE
estimates for each Nas. The figure shows that, when Nas increases from 10 to 200, NSE estimate
becomes more accurate and more consistent. This is reasonable, because more samples in the active
set allow a better chance to explore the parameter space for constructing the X space. However,
increasing Nas results in a dramatic increase in computational cost. Figure 3b shows that, when Nas

increases from 10 to 200, the number of samples (i.e., number of model executions) increases 3 orders
of magnitude, from 10,000 to
10 million. To balance between
computational cost and accu-
racy, Nas 5 25 is used.

This study also tunes two other
parameters that are random
during the NSE evaluation. The
first one is the random number,
x, used in equation (29); in
addition to the normal distribu-
tion, N(0,1), two other distribu-
tions, N(0,0.5) and U(0,1), are
also used. The other parameter
is the randomized step-size
reduction factor, R, used in
equation (30). It is either fixed at
R 5 1 or sampled randomly
from U[0,1]. These variations are
used to determine whether
smaller update of the evolving
samples increase accuracy and

Figure 5. Convergence of (a) AME, TIE, and NSE and (b) HME for the linear function.

Figure 6. Accuracy and consistency of AME, HME, TIE, and NSE for the linear function
based on 10 repeated runs.
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efficiency of NSE, because
smaller update increases the
chance of finding next Xi before
NSE iteration is terminated.
Based on 50 repeated runs, Fig-
ure 3 shows the boxplots of the
NSE estimates for the three dis-
tributions with either fixed or
random R. The first two box-
plots in the figure indicate that,
for Nð0; 1Þ, using either fixed or
random R does not affect the
accuracy and consistency. The
computational cost of the two
cases are similar; the number of
model executions for Nð0; 1Þnr

(fixed R) and Nð0; 1Þr (random R)
are 1:05 3 10562:75 3 103 and
1:04 3 10562:64 3 103, respec-
tively. The same conclusion is
also drawn for the distribution of

N(0,0.5). For the distribution of U(0,1), poor NSE estimates can be obtained, and this distribution should not be
used.
3.1.3. Accuracy of Numerical Solutions
Table 1 lists the numerical solutions of the marginal likelihood given by Laplace-MAP, Laplace-MLE, AME,
HME, TIE, and NSE. For the linear model and Gaussian likelihood function and priors, the analytical solution
of the marginal likelihood is of 5.1194 3 10214, calculated using the commercial software, Mathematica. It
is labeled as the reference value in Table 1. The solutions of Laplace-MAP and Laplace-ML are also obtained
using Mathematica. For each of the four MC methods, 10 repeated runs are conducted, and the best results
(closest to the reference value) are listed in Table 1. The number of samples for each run is given in section
3.1.4 where convergence of the MC methods is discussed.

Table 1 shows that the Laplace-MAP solution is exactly the same as the reference solution. This is expected
for the linear function and Gaussian likelihood and priors, as explained in section 2. Laplace-MLE overesti-
mates the marginal likelihood by about 10.34%, which is caused by the determinant of the Fisher informa-
tion matrix. For the MAP parameter estimates (~a52:0255, ~m52:9978), the determinant is 0.007859; for the
ML parameter estimates (â52:0256, m̂52:9969), the determinant becomes 0.008671. The Fisher informa-
tion matrix is not always the reason for inaccurate Laplace-MLE results. In the third example with the ten-
dimensional analytical function, the prior probability is the major factor affecting accuracy of Laplace-MLE,
when an informative prior is used. The AME solution and the reference solution are almost identical, with
the relative error being 20.16%, because a large number of prior samples are used for this two-dimensional
problem. TIE and NSE also give accurate estimates with the relative error being 20.36% and 20.76%,
respectively.

HME substantially overestimates the marginal likelihood by about 1 order of magnitude. This is not caused
by inefficiency of MCMC sampling conducted for evaluating HME, because Figures 4b and 4c show that the
marginal posterior parameter distributions (b 5 1) are visually identical to their analytical counterparts eval-
uated using Mathematica. The reason that HME overestimates the marginal likelihood is that the method
uses only posterior samples that only occupy a small portion of the prior parameter space. This is shown in
Figure 4a that plots the MCMC parameters for different b values. The figure shows that the posterior space
(b 5 1) is significantly narrower than the prior space (b 5 0). In fact, the parameter samples gradually
spread from the posterior out to the prior space. This is also observed in the marginal density plots of the
two parameters in Figures 4b and 4c; the marginal posterior density functions (b 5 1) are significantly nar-
rower than those of the other two b values of 0.05 and 0.25. Therefore, if the posterior samples (b 5 1) are
used for evaluating HME, HME overestimates the marginal likelihood. This also explains why TIE is accurate,

Figure 7. Variation of log likelihood (Log(L(X)) for three repeated NSE runs for the linear
function.
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because more parameter samples (from b 5 0 to b 5 1) with low values of the joint likelihood are used for
calculating the marginal likelihood. It should be noted that HME is inaccurate only when the posterior distri-
butions are narrower than the prior distributions. In an extreme case that the prior and posterior distribu-
tions are identical, HME and TIE should yield the same result.
3.1.4. Convergence and Consistency of MC Solutions
Figure 5 plots the convergence of the marginal likelihood estimates given by AME, HME, TIE, and NSE. As
mentioned above, for each of the four estimators, 10 repeated MC runs are conducted, and the best run
with the estimates closest to the reference value is used for the convergence analysis. In each run, 20 mil-
lion samples are used for AME; 20 millions of parameter samples are used for HME, and the number of
burn-in sample is 100,000. For each of the 38 bk values of TIE, 500,000 samples are used, and the number of
burn-in sample is 10,000. Therefore, the total function evaluation is 19 million. Because of the burn-in sam-
ples, the convergence profile of TIE starts from the sample size of 380,000. For NSE, the number of function
evaluation is about 100,000.

Figure 5a shows that NSE has the fastest convergence rate, stabilizing with less than 100,000 samples. Although
AME reaches the reference value after about 200,000 samples, AME increases again after about 400,000 sam-
ples and then converges after about 2 million samples. In this sense, TIE converges faster than AME, because
TIE converges after about 1 million samples. Figure 5b shows that HME diverges. The sudden drops of HME are
caused by the parameter samples that have small values of joint likelihood but are accepted with probability in
the Metropolis sense. Because HME uses the posterior sample, its value is consistently larger than the reference
value. Figure 5 indicate that HME is the worst estimator and that NSE is the most computationally efficient one.

Figure 8. (a) TIE-related MCMC samples of a and m, and (b and c) marginal density functions of m and a for different b values for the two-
dimensional nonlinear function.
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Figure 6 shows the boxplots of the estimates of AME, HME, TIE, and NSE based on the 10 repeated
model runs mentioned above. The figure shows that, while NSE is computationally more efficient than
TIE, TIE is significantly more consistent than NSE in that the results of TIE have a significantly smaller
variability. The NSE variability is not surprising, because, whenever a new active set is used and new
proposal samples are drawn, the likelihood values used to evaluate equation (28) change. This is illus-
trated in Figure 7 for three repeated NSE runs; log likelihood values are plotted for demonstration.
The figure shows that the variation starts after X 5 0.2 and becomes substantial after X 5 0.6. It is thus
concluded that, although NSE is computationally more efficient than TIE, NSE may not provide reliable
estimate of the marginal likelihood. This problem becomes worse in the third case with a wide prior
range, because NSE cannot find parameter samples with high likelihood for accurate estimate of the
marginal likelihood.

3.2. Two-Dimensional
Nonlinear Analytical Function
Consider a two-dimensional non-
linear function,

y5x=a1sin ðamxÞ1e; (32)

where the true parameter val-
ues are a 5 2 and m 5 0.1.
Twenty samples of y are gener-
ated with x5f1; 2; . . . 20g, and
subsequently corrupted using
one realization of white noise, e,
with mean zero and variance,
r251. The posterior parameter
distribution of parameter, a, is
multimodal due to the sine
function and the multiplication
of a and m. This is shown in Fig-
ure 8 that plots the posterior
parameter samples and mar-
ginal distributions of the two

Figure 9. Convergence of (a) AME, TIE, and NSE and (b) HME for the two-dimensional nonlinear function.

Figure 10. Accuracy and consistency of AME, HME, TIE, and NSE for the two-dimensional
nonlinear function based on 10 repeated runs.
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parameters obtained from the
MCMC simulation with different
b values; those of b 5 1 are the
posterior samples and distribu-
tions. Figure 8c shows that
there are multiple modes on
the distributions of a; the mode
near the true values are
significantly larger than other
modes. Because the multimodal
distribution, more realizations
are needed for the MCMC
simulations.
3.2.1. Accuracy of Numerical
Solutions
Table 1 lists the numerical solu-
tions of the marginal likelihood
given by Laplace-MAP, Laplace-
MLE, AME, HME, TIE, and NSE.
Since analytical solution of the
marginal likelihood is unavail-

able for this nonlinear function, a numerical reference value is obtained using AME with 1 billion samples,
which givens an estimate of 1:1667310214 with a standard deviation of 1:65310217. The solutions of
Laplace-MAP and Laplace-ML are obtained using Mathematica. For the MC solutions, 10 repeated runs are
conducted, and the best results (closest to the reference value) are listed in Table 1. In each run, about 50
million model executions are conducted for AME, HME, and TIE to ensure convergence. For TIE, by following
the procedure described in section 3.1, 30 discrete b values are determined. For NSE, by following the pro-
cedure described in section 3.2, the size of active set is chosen to be 25, and the distribution of x is set as N
ð0; 1Þ without using the randomized step-size reduction factor.

Table 1 shows that Laplace-MAP and Laplace-MLE underestimate the marginal likelihood by 210.19% and
29.15%, respectively. This may be attributed to the multimodal nature of the parameter distributions,
recalling that Laplace-MAP and Laplace-ML only evaluate the marginal likelihood around the MAP and ML
parameter estimates, as explained in section 2.1. The underestimation is relatively small, because the modes
other than the MAP and ML are small, as shown in Figure 8c. For the MC solutions, similar to those of the lin-
ear function, AME gives the most accurate estimate with the relative error of 0.02%; the relative errors of TIE
and NSE are slightly larger than 0.1%. HME still give the worst result, because of the divergence problem
that is shown in Figure 9.
3.2.2. Convergence and Consistency of MC Solutions
Figure 9 plots the convergence of the marginal likelihood estimates given by AME, HME, TIE, and NSE. For
each of the four estimators, 10 repeated MC runs are conducted, and the best run with the estimates closest
to the reference value is used for the plot and the convergence analysis. Figure 9a shows that, for the two-
dimensional nonlinear function, NSE is the most computationally efficient method, converging to the

Figure 11. Joint likelihood for parameter a1 of the ten-dimensional nonlinear function.

Table 2. Numerical Estimates and Their Relative Errors For Calculating Marginal Likelihood of a Nonlinear Function With 10 Parametersa

Method

Narrow Prior (r 5 0.01) Wide Prior (r 5 1)

Mean Relative Error Std Mean Relative Error Std

Reference 4.8999 3 10214 5.6537 3 10214

Laplace-MAP 4.9077 3 10214 0.16% 7.4233 3 10215 286.87%
Laplace-MLE 6.244 3 102126 2100 3.4371 3 10213 507.92%
AME 4.9094 3 10214 20.07% 3.03 3 10217 9.2513 3 10222 2100 3.51 3 10221

HME 6.2256 3 10219 2100% 9.86 3 10219 4.1430 3 10227 2100 5.86 3 10227

TIE 4.8838 3 10214 20.38% 1.32 3 10215 6.1139 3 10214 8.14% 3.26 3 10215

NSE 5.9961 3 10214 22.37% 6.80 3 10214 1.3545 3 102105 4.06 3 102105

aA narrow and a wide priors are used for the evaluation. The reference values are numerical for the two priors.
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reference value with less than 100,000 samples. AME converges with less than 1 million samples. TIE is
more computationally demanding, and needs 10 million samples to converge. However, the computational
cost of TIE depends on the required accuracy. Although 10 million samples are needed to reach the relative
error of 0.13% (Table 1), only 500,000 samples are needed to reach the relative error of 5%. Figure 9b shows
that HME diverges after about 5 million samples, as it drops dramatically for about 10 orders of magnitude.
The drop is attributed to a sample with an extremely small joint likelihood. After the sudden drop, HME
does not return to the best estimate even after 50 millions of samples. The HME value listed in Table 1 is
the best estimate before the sudden drop occurs.

Figure 10 shows the boxplots of the estimates of AME, HME, TIE, and NSE based on the 10 repeated model
runs mentioned above. While NSE is computationally more efficient than TIE and accurate on average, TIE is
significantly more consistent than NSE in that the results of TIE have a significantly smaller range. As
explained for the linear function, the inconsistency is inherent to NSE due to the high uncertainty in select-
ing the likelihood values for computing the marginal likelihood. Given that NSE is accurate on average and
computationally more efficient, one may conduct a large number of repeated runs to obtain reliable NSE
estimate of the marginal likelihood.

3.3. Ten-Dimensional Nonlinear Analytical Function
The two cases above appear to suggest that AME is the best MC approaches, because it is conceptually
straightforward, provides accurate results, and converges fast. For the same reasons, NSE is the second best
MC approach. These conclusions are incorrect for the ten-dimensional, nonlinear function defined as,

y5
Xn21

i51

ðai21Þ21
1
2
ðx22ai11Þ21e

5ða121Þ21
1
2
ðx22a2Þ21 � � �1ðan2121Þ21

1
2
ðx22anÞ21e;

(33)

where n 5 10 is the number of parameter, a 5 {a1,a2,. . .,a10}. The true value of each parameter is taken as
one. Twenty samples of y are generated with x5f1; 2; . . .; 20g and corrupted using one realization of white
noise with mean zero and variance, r251. The likelihood of this ten-dimensional analytical function has a
sharp peak that decreases to zero quickly within a narrow region in the parameter space. This is illustrated
in Figure 11 for parameter a1, with the other nine parameters fixed at their true values. The parameter range

Figure 12. Convergence of (a) AME, TIE, and NSE and (b) HME for the ten-dimensional nonlinear function.
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with nonzero likelihood is smaller than 0.004. The narrow range, as explained below, makes it difficult to
obtain accurate estimates of the marginal likelihood, especially when the prior is wide. Using again the
Gaussian prior for each parameter, two situations with small and large variance are considered. For the nar-
row prior of Nð1; 0:01Þ, the numerical approximations (except Laplace-ML and HME) give satisfactory results;
for the wide prior of Nð1; 1Þ, only TIE gives satisfactory results.
3.3.1. Narrow Prior of N(1,0.01)
Table 2 lists the numerical solutions of the marginal likelihood given by Laplace-MAP, Laplace-MLE, AME, HME,
TIE, and NSE. Since analytical solution of the marginal likelihood is unavailable for this nonlinear function, a
numerical reference value is obtained using AME with 1 billion samples, which givens an estimate of 4:8999 3

10214 with the standard deviation of 3:08 3 10217. The solutions of Laplace-MAP and Laplace-ML are obtained
using Mathematica. For TIE, by following the procedure described in section 3.1, 12 discrete b values are deter-
mined. For NSE, by following the procedure described in section 3.2, the size of active set is chosen to be 25,
and the distribution of x is adjusted to Nð0; 0:05Þ for the narrow prior; the step-size reduction factor is fixed
during the simulation. For the four MC approaches (AME, HME, TIE, and NSE), 10 repeated MC runs are con-
ducted, and the best results (close to the reference value) are listed in Table 2.

Table 2 shows that, while Laplace-MAP is accurate, Laplace-MLE substantially underestimates the mar-
ginal likelihood. The underestimation is attributed to the small value (6:244 3 102126) of pðĥjMÞ (i.e.,
evaluation of the prior at the maximum likelihood parameter estimate used in equation (8)) due to the
narrow prior. Taking parameter a1 as an example, its maximum likelihood estimate is 1.069, and the
prior evaluated at this value is close zero (Figure 11). This problem does not occur for Lapalce-MAP,
whose p ~h

� ��MÞ value is 1:018 3 1016. The reason is that using the narrow prior substantially increases the
accuracy of the maximum a posterior parameter estimates. For example, the estimate of a1 is 1.00045,
close to the true value of one. It should be noted that the substantial impact of prior on estimating the
marginal likelihood is not common in practice, because narrow priors are seldom used and uniform
prior is used more often than Gaussian prior.

For the MC solutions, similar to those of the previous two cases, AME gives the most accurate estimate with
the relative error of 0.07%. This is not surprising, because of millions of parameter samples are generated

for the narrow prior space. TIE is more
accurate than NSE, as the relative errors
of TIE and NSE are 0.38% and 22.37%,
respectively. The accuracy of NSE is sub-
stantially affected by the prior range and
shape of the likelihood function. For the
wide prior, NSE gives unacceptable esti-
mate of the marginal likelihood, and
more details are given below. HME still
give the worst result, because of the
divergence problem shown in Figure 12.

Figure 12 plots the convergence of the
marginal likelihood estimates given by
AME, HME, TIE, and NSE. For each of the
four estimators, 10 repeated MC runs are
conducted, and the best run with the esti-
mates (closest to the reference value) is
used for the plot and the convergence
analysis. Because of the narrow prior, the
MC simulations converge faster than the
previous two cases, and only 4 million
samples are needed for each MC method.
For the narrow prior, AME converges after
about 600,000 samples. NSE needs about
1 million samples mainly because the
peaked likelihood, and TIE needs about 3

Figure 13. Modeling domain of the true model with the confining unit in
yellow, Blue Lake, and Straight River. Measurements of hydraulic conductivity
and hydraulic head are available at the locations marked by black squares.
Only head observations are available at the locations marked by the green
circles.
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million samples. The convergence behavior of HME is similar to that of the two-dimensional nonlinear case
shown in Figure 9, dropping suddenly when a sample with a dramatically small likelihood is used for evalu-
ating HME.

For examining consistency of the four MC approaches, Table 2 lists the standard deviations of the MC esti-
mates based on the 10 repeated runs based on 4 million. The boxplots used for the previous two cases are
not used, because the mean and standard deviation vary by several orders of magnitude. The standard
deviations show again that NSE estimates have the largest variability, indicating inconsistency of the NSE
results. In the numerical case with wide prior shown below, NSE fails to estimate the marginal likelihood.
3.3.2. Wide Prior of N(1,1)
Table 2 lists the numerical solutions of the marginal likelihood given by Laplace-MAP, Laplace-MLE, AME,
HME, TIE, and NSE for the wide prior. Since AME does not converge with 1 billion samples for the wide

Figure 14. Four alternative groundwater models with different geometric configurations of the confining layer highlighted in yellow. The
models also have different number of calibrated hydraulic conductivity, and their locations are highlighted with red squares.
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range, the numerical reference value of 5.6537 3 10214 is obtained using TIE with 21 beta values and about
100 million samples. Laplace-MAP and Laplace-MLE are evaluated using Mathematica. For each of the four
MC approaches, 10 repeated runs are conducted, and each uses about 10 million samples. The best results
(closest to the reference) are listed in Table 2. Laplace-MAP and Laplace-MLE are evaluated using
Mathematica.

Table 2 shows that the result of Laplace-MAP is about 1 order of magnitude smaller than the reference
value, and that of Laplace-MLE is about 1 order of magnitude larger. Despite of the errors, these Laplace
results are still significantly more accurate than those of AME, HME, and NSE. The inaccuracy of AME is
attributed to its slow convergence, and the inaccuracy of HME is attributed to its erroneous convergence
whenever samples of small likelihood are used for evaluating HME.

Table 2 shows that TIE outperforms NSE. TIE gives the best result that is only 8.14% larger than the reference
value. The NSE result is enormously small. This however is not surprising when considering the sampling
strategy used for NSE in this study and the peak likelihood with a small region of the parameter space.
When parameter samples are drawn from the prior distribution for an active set, for the wide prior, it is
highly likely that the samples have small likelihood. When MCMC simulation described in section 2.4 is con-
ducted, due to the highly peaked likelihood function, the chance of finding new samples with larger likeli-
hood is low. As a result, small likelihood is used in equation (28) for evaluating NSE. This problem cannot
resolved by tuning the Metropolis-Hasting algorithm, such as using larger MCMC samples, several different
proposal distributions used in equation (29), and different initial step size and step-size reduction factor
used in equation (30). The only solution to this problem seems to use advanced MCMC algorithms for NSE,
such as MT-DREMA(ZS) [Laloy and Vrugt, 2012], which however is beyond the scope of this study.

3.4. Alternative Groundwater Models
The exercises above for the analytical functions are extended to a synthetic case of groundwater modeling
with a ‘‘true’’ model and four alternative models. The true model is the same as the synthetic model of Lu

et al. [2012a], and it is used to generate
data for model calibration and predictive
analysis. For the confining layer of the
true model shown in Figure 13, four geo-
metric configurations are proposed, and
they lead to four alternative models (A–D)
shown in Figure 14. Model D is the closest
to the true model, and Model A is the
worst because it does not include the
south portion of the confining layer.
Except the geometric configuration, other
model components of the four models
are the same as those of the INT model
described in Lu et al. [2012a]. The model
calibration data include 54 observations
of hydraulic head from 27 wells shown in
Figure 13 (two head from each well in
layers 1 and 3), one lake stage observa-
tion of the Blue Lake, and two

Table 3. Values of AME, HME, TIE, and Their Corresponding Model Averaging Weight (%) of Four Alternative Models

A B C D

Laplace-MAP 7.8816 3 10232 5.2905 3 10226 8.3172 3 10225 1.7860 3 10223

Laplace-MAP-based probabilities 0.00% 0.29% 4.43% 95.28%
AME 5.3421 3 10247 2.0904 3 10245 6.3129 3 10242 7.3611 3 10240

AME-based probabilities 0.00% 0.00% 0.85% 99.15%
HME 6.3991 3 10224 4.8562 3 10220 8.9377 3 10218 3.4615 3 10216

HME-based probabilities 0.00% 0.01% 2.52% 97.47%
TIE 1.0420 3 10242 1.5356 3 10239 6.3992 3 10239 4.3887 3 10238

TIE-based probabilities 0.00% 2.96% 12.35% 84.69%

Figure 15. Variation of yk (equation (24)) with bk (power coefficient in
equation (13)) for model D of the groundwater example.
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observations of streamflow gain at locations G1 and G2 along the Straight River shown in Figure 13. The
calibrated parameters include leakance of the confining layer, conductance of the riverbed, and hydraulic
conductivities. The number of calibrated parameters is 12, 16, 18, and 21 for models A–D, respectively.
These number of model parameters are moderately high in groundwater modeling. The locations of the
calibrated hydraulic conductivity are shown in Figure 14 for the four models. Prior information is used for all
the parameters as described in Lu et al. [2012a].

Table 3 lists the marginal likelihood evaluated using AME, HME, and TIE. Due to the high computational cost
of solving the groundwater models (relative to that for the analytical functions), obtaining reference values
by running AME with billion samples is computationally unaffordable. Instead, 1.4 million samples are used
for AME, and this also is the number of samples used for TIE. For each model, TIE uses seven b values, and
Figure 15 plots the variation of yk with bk for Model D as an example; the relation between yk and bk is simi-
lar to this for the other three models. Although adding more bk values may improve the TIE calculation, it is
not attempted due to the computational cost. For each bk value, 200,000 MCMC simulations are conducted.
This large number of simulation ensures convergence of MCMC, as shown by the R statistics plotted in Fig-
ure 16 for b 5 1 as an example. The number of samples used for calculating HME is also 200,000. NSE is not
evaluated for this example, because of the computational cost.

Table 3 shows that the AME values are smaller than the TIE values, which is reasonable given that the
dimensions of the groundwater models are moderately high. The HME values are consistently larger than
the TIE values, as observed in the previous cases. The TIE results are believed to be more accurate than the
AME and HME results, because posterior parameter distributions are narrower than the prior parameter dis-
tributions for most of model parameters. Figure 17 plots the marginal prior and posterior distributions of
three parameters of Model D. The posterior distributions correspond to four b values. The three plots of in
Figure 16 shows three different situations that the posterior distributions are significantly, moderately, and
slightly smaller than the prior distributions. In these situations, underestimation of AME and overestimation
of HME is unavoidable, and TIE should yield more accurate results than AME and HME.

Table 3 also lists the model probability calculated using the marginal likelihood and the uniform prior
model probability of 25% for each model. The results of AME and HME are dramatically different from
those of TIE. For AME and HME, Model D receives nearly 100% model probability. However, the TIE-based
probability of model D is reduced to 84.69%. Correspondingly, the probability of model C increases from
2.52% (given by HME) to 12.35%, when TIE is used. The TIE-based model probabilities appear to be more
reasonable, given the similarity in the configuration of the confining layer.

Since reference values of the marginal likelihood and model probability are unavailable, a predictive
analysis is conducted to evaluate the effect of AME, HME, and TIE-based model probabilities on BMA

Figure 16. Variation of R statistics with number of MCMC samples for b 5 1. The 200,000 samples ensure the MCMC convergence.
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model prediction. In the predictive
analysis, the model prediction is the
decrease of streamflow at gauge site G2
due to pumpage at wells P1 and P3
(locations shown in Figure 13). Figure
18 plots the 95% credible intervals of
models A–D estimated from the MCMC
simulation with b 5 1 (the asymmetric
credible intervals indicates that the pre-
dictions are non-Gaussian). The figure
shows that the mean prediction of
model C is more accurate than that of
model D, although the credible inter-
vals of the two models are similar.
Therefore, using the TIE-based model
probability should yield better BMA
predictive performance than using the
AME and HME-based model probability,
considering that TIE-based probability
of Model C is 12.35%. This is confirmed
by the logscore of BMA defined as
[Ye et al., 2004]

2ln p D�ð jDÞ52ln
XK

k51

p D�ð jMk ;DÞp Mkð jDÞ
 !

;

(34)

where D* is the value of streamflow
change (due to the pumping) simulated
by the true model. The logscore of an
individual model is defined as
2ln p D�ð jMk ;DÞ. A smaller logscore
means a larger probability of predicting
the true value, and thus indicates better
predictive performance. The TIE-based
logscore is 23.65, smaller than the HME-
based logscore of 23.62, indicating that
TIE improves BMA predictive perform-
ance. It should be noted that, although
the improvement is marginal, it is only for
one prediction. More significant improve-
ment is expected for a large number of
predictions.

4. Conclusions and Discussion

This study evaluates several numerical
methods for evaluating the marginal like-
lihood. The methods can be classified into
two categories: Laplace approximation
and Monte Carlo (MC) approximation. The
Laplace approximation method has two

variants: Laplace-MAP using maximum a posterior estimates of model parameters, and Laplace-MLE using
maximum likelihood estimates of model parameters. The MC approximation method includes four estima-
tors: arithmetic mean estimator (AME), harmonic mean estimator (HME), thermodynamic integration

Figure 17. Marginal density functions of three parameters of Model D
obtained using MCMC simulations with different b values. The posterior
parameter distributions are (a) significantly, (b) moderately, and (c) slightly
smaller than the prior parameter distributions.
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estimator (TIE), and nested sampling esti-
mator (NSE). While Laplace-AME, Laplace-
ML, AME, and HME have been used
widely in environmental modeling, NSE
has not been used until recently. It is the
first time that TIE is used for quantifying
model uncertainty in groundwater model-
ing. Three analytical functions are used to
evaluate these numerical methods in
terms of their accuracy, convergence,
computational cost, and consistency. For
each analytical function, the reference
value of the marginal likelihood is
obtained either analytically or numerically
using a large number of MC simulations.
For the evaluation using groundwater

models, a predictive analysis is used to investigate the impacts of Laplace-MAP, AME, HME, and TIE on the
calculation of model probability and BMA predictive performance.

This study leads to the following major conclusions:

1. The marginal likelihood estimates given by Laplace-AME and Laplace-MLE are overall comparable with
those obtained using the MC methods, despite that the truncation error is inherent to the Laplace
approximation method.

2. Laplace-AME gives more accurate results than Laplace-MLE, when informative priors are used, because
the priors improve accuracy of parameter estimation. If it is difficult to obtain maximum a posterior
parameter estimates, noninformative should be used to reduce the prior impacts on the Laplace-MLE
evaluation.

3. Given that Laplace-AME and Laplace-MLE can be evaluated with low-computational cost, model proba-
bility should be calculated using the Laplace approximation method, before the computationally expen-
sive MC method is attempted to obtain more accurate estimates.

4. For the MC-based numerical methods, the key to obtain an accurate estimate of the marginal likelihood
is to use parameter samples that can sufficiently cover the entire parameter space. The reason that AME
underestimates the marginal likelihood is that it uses prior samples that may not have enough samples
from the posterior parameter space where the joint likelihood is high. The reason that HME overesti-
mates the marginal likelihood is that it uses samples from the posterior parameter space where the joint
likelihood is high. AME can be used to estimate the marginal likelihood, when a large number of samples
are generated from the prior space that is low dimensional and/or has a narrow range. It is recom-
mended not to use HME under any circumstances, because it diverges when samples with small joint
likelihood are used for its evaluation. This problem cannot be resolve even a large number of samples
are used for the evaluation.

5. TIE uses samples that are systematically generated from the prior to the posterior parameter space by con-
ducting a path sampling with a number of discrete power coefficient values. TIE is mathematically rigorous,
and its implementation is straightforward. The implementation is also general in that it can use any MCMC
simulation for evaluating the yk term used in equations (23) and (24). Although the discrete power coeffi-
cient values are unknown before starting the MCMC simulation, they can be determined in an empirical
but objectively manner with negligible ambiguity. Due to the repeated MCMC simulations for a number of
power coefficient values, TIE is computationally expensive. The computational burden may be alleviated, if
the MCMC simulations for different power coefficient values are conducted in parallel.

6. Although NSE does not explicitly sample from the prior to the posterior parameter space, the procedure
of constructing the X space and finding the corresponding LðXijD;MÞ values is equivalent to searching
from the prior to the posterior parameter space. However, NSE cannot guarantees that samples are gen-
erated systematically from the prior to the posterior space. This makes NSE theoretically inferior to TIE,
especially when the joint likelihood is peaked. How to construct the X space remains a challenging issue
for NSE.

Figure 18. Median and 95% credible intervals of predicted streamflow
change at gauge site G2 for models A–D. The horizontal blue line represents
the true value of the prediction.
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7. Because of the randomness in constructing the X space, NSE is less consistent than TIE in that NES esti-
mates of repeated runs have larger variability than TIE estimates of repeated runs. However, since the
NSE results are accurate on average, a large number of repeated runs may be conducted for NSE to alle-
viate the problem of inconsistency.

More research is warranted for evaluating TIE and NSE. One focus of the future research is to improve the
sampling algorithms used for NSE. The currently used Metropolis-Hasting algorithm may yield unfavorable
results for NSE, because the algorithm is inefficient to generate samples for high-dimensional parameter
space and irregular joint likelihood (e.g., highly peaked and multimodal). NSE performance could be
improved dramatically, if more advanced MCMC sampling methods were used. Another focus of the future
research is to further evaluate TIE and NSE in groundwater modeling context, especially for reactive trans-
port modeling whose likelihood surface is extremely irregular [Shi et al., 2014]. Since computational cost is
always a barrier for extensive MC simulation in practice, the evaluation will have to rely on using surrogates
of groundwater models. This is feasible, given that surrogate modeling has been widely used in uncertainty
quantification of groundwater modeling [Razavi et al., 2012; Laloy et al., 2013; Zhang et al., 2013]. However,
building accurate surrogates for highly nonlinear problems is another challenge that the community of
groundwater modeling is facing, and interdisciplinary research with collaboration with the applied mathe-
matics community is indispensable.
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