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Population parameter inference
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Genetic Data Mutation model Population model

Posterior Distribution and Marginal Likelihoods



We can analyze sequence data D using a particular model M and can
get answers in form of posterior distributions of the parameters of the
model:

P (Θ|D,M) =
P (Θ|M)P (D|Θ,M)∫

ΘP (Θ|M)P (D|Θ,M)dΘ
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Short run without any data using Gamma distributed priors.

We can analyze sequence data D using a particular model M and can
get answers in form of posterior distributions of the parameters of the
model:

P (Θ|D,M) =
P (Θ|M)P (D|Θ,M)∫

Θ
P (Θ|M)P (D|Θ,M)dΘ
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Short run with data.

We can analyze sequence data D using a particular model M and can
get answers in form of posterior distributions of the parameters of the
model:

P (Θ|D,M) =
P (Θ|M)P (D|Θ,M)∫

Θ
P (Θ|M)P (D|Θ,M)dΘ

Population parameter inference
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Comparing models
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Bayes theorem:

P (Θ|D,M) =
P (Θ|M)P (D|Θ,M)∫

Θ
P (Θ|D,M)dΘ

=
P (Θ|M)P (D|Θ,M)

P (D|M)



Comparing models
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We use marginal likelihoods
(in practice, this is the denominator of Bayes formula).
Bayes theorem:

P (Θ|D,M) =
P (Θ|M)P (D|Θ,M)∫

Θ
P (Θ|D,M)dΘ

=
P (Θ|M)P (D|Θ,M)

P (D|M)

Solving for the marginal likelihood:

P (D|M) =
P (Θ|M)P (D|Θ,M)

P (Θ|D,M)

In Markov chain Monte Carlo applications this is tricky, because we do
not calculate the P (D|M) directly, but approximate using thermodynamic
integration.
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Simulated data
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Two loci simulated from model x0Dx:

Model Log(mL) LBF Model-probability

-------------------------------------------------------

1: xxxx: -9662.42 -23.73 0.0000

2: xDxx: -9661.98 -23.29 0.0000

3: xxDx: -9661.52 -22.83 0.0000

4: xd0x: -9656.51 -17.82 0.0000

5: xD0x: -9649.33 -10.64 0.0000

6: xx0x: -9648.93 -10.24 0.0000

7: x0dx: -9641.77 -3.08 0.0402

8: x0xx: -9641.01 -2.32 0.0859

9: x0Dx: -9638.69 0.00 0.8739
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Two loci simulated from model x0Dx:

Model Log(mL) LBF Model-probability

-------------------------------------------------------

1: xxxx: -9662.42 -23.73 0.0000

2: xDxx: -9661.98 -23.29 0.0000

3: xxDx: -9661.52 -22.83 0.0000

4: xd0x: -9656.51 -17.82 0.0000

5: xD0x: -9649.33 -10.64 0.0000

6: xx0x: -9648.93 -10.24 0.0000

7: x0dx: -9641.77 -3.08 0.0402

8: x0xx: -9641.01 -2.32 0.0859

9: x0Dx: -9638.69 0.00 0.8739

Best Worst



1    Texas was a refugium from which populations expanded northward into other regions.   
2 P. illinoensis is derived from P. streckeri that expanded through the Arkansas River Valley. 
3    There is detectable genetic structure within P. illinoensis consistent with the disjunct range.
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Fig. 2 Example models compared in MIGRATE-N to make inferences regarding the hypotheses described (1–3). Each circle represents
an effective population size parameter, and each arrow represents a migration parameter. Region labels as in Table 1. Note that only
a subset of the models tested is illustrated; all 24 tested models are shown in Data S1.
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P. illinoensis and the disjunct clusters within this taxon
are differentiated at nuclear microsatellites. Furthermore,
under the evolutionary population concept of Waples &
Gaggiotti (2006), we find that the northern and southern
clusters within P. illinoensis meet even the most stringent
criteria for defining units important for conservation.
In addition to rejecting models of panmixia within
P. illinoensis, the effective number of migrants estimated
(~0.369 between northern and southern P. illinoensis) was
well below the stringent value of Nem = 1, which is the
suggested lower limit for maintaining connectivity in
population management (Mills & Allendorf 1996). These
disjunct clusters are clearly genetically distinct and can
be considered separate management units. We did not
include the central P. illinoensis cluster in these analyses
because of low sample size, although other results
(Fig. 4) indicate these individuals are genetically similar
to the northern cluster.
The allopatric distribution of P. illinoensis, lack of

suitable intermediate habitat and the evidence that the
nearest populations (Clay County, Arkansas) to
P. streckeri are declining (Trauth et al. 2006) underscore
the importance of preserving these populations. Here,
we outline topics that deserve further study, both to
address taxonomy and inform management efforts.

First, additional genetic sampling of P. streckeri in Texas
and surrounding areas is warranted to determine
whether other lineages or management units should be
recognized, and whether geographic range boundaries
need to be redefined. The application of species delimi-
tation methods (e.g. Yang & Rannala 2014) with more
complete geographic sampling across this region may
help resolve the taxonomic issues in this species com-
plex. Behavioural studies that measure male acoustic
signals and test female preferences between multiple
populations of P. streckeri and P. illinoensis may be of
interest to determine the degree of reproductive isola-
tion between these taxa. It would also be useful to
investigate the ecological requirements of both P. streck-
eri and P. illinoensis in relation to available habitat,
given the unique burrowing lifestyle and association
with sand prairies that has been highlighted in P. illi-
noensis (Brown et al. 1972; Axtell & Haskell 1977; Brown
1978). Perhaps most importantly, fine-scale studies of
population connectivity within P. illinoensis incorporat-
ing landscape information will further inform conserva-
tion efforts and population management.

Model testing in phylogeography

As the amount of data in phylogeographic studies con-
tinues to grow rapidly, efforts will need to focus on the
development and refinement of approaches for making
inferences from large data sets (e.g. Carstens et al. 2013;
Smith et al. 2014). In this study, we took the approach
of evaluating models that either support or contradict
previously proposed biogeographic hypotheses.
Although this is not the same as traditional hypothesis
testing in the sense that there is not a null hypothesis to
reject or fail to reject, we demonstrate that model-based
approaches are useful for choosing among a priori
hypotheses to make meaningful inferences. We recog-
nize that there are shortcomings to this strategy, most
important of which is that we may not have considered
a model that could be better supported by the data
(Hickerson 2014). We chose to evaluate a set of models
designed to test specific hypotheses because it is more
tractable than trying to compare all possible models
and provides more useful insights than comparing sev-
eral models that do not have a meaningful biological
interpretation. Emerging methods for generating and
evaluating all or many phylogeographic models for a
given data set (B. C. O’Meara, A. E. Morales-Garci!a,
N. D. Jackson, B. C. Carstens, in review) have the
potential to provide additional insights and may be par-
ticularly useful if limited prior knowledge of the system
in question is available to inform model design.
A significant challenge to phylogeographic research is

the computational effort involved in estimating complex
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Fig. 5 Best model tested in MIGRATE-N depicted on species range
map. The mode of each parameter estimate for effective popu-
lation size (h) and migration rate (M, bold text with arrows) is
shown.
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Frog picture: http://mdc.mo.gov/discover-nature/field-guide

Lisa N. Barrow, Alyssa T. Bigelow, Christopher A. Phillips,
and Emily Moriarty Lemmon (2015) Phylogeographic inference
using Bayesian model comparison across a fragmented
chorus frog species complex. Molecular Ecology, doi:
10.1111/mec.13343

A real example
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Extending the model
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Recombination
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Recombination
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Still, many concatenate their ’loci’ or SNPs, for phylogenetic analyses:



Recombination
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Still, many concatenate their ’loci’ or SNPs, for phylogenetic analyses:

Many analyze only the SNPs independently, for population studies:



To much, too little?
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Still, many concatenate their ’loci’ or SNPs, for phylogenetic analyses:

Many analyze only the SNPs independently, for population studies:

Both approaches are questionable!



Too much, too little? Does it matter?
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What are the effects on our parameter estimation if we ignore recombination

and analyze long stretches of contiguous sequence?

What are the effects, if we assume recombination is rampant and we

consider only small chunks of sequence?

Too much, too little? Does it matter?
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Ignoring recombination
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Ratio of recombination rate versus mutation rate R

∼500 simulated datasets
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Averages with 95% credibility intervals of runs with different mutation-scaled
recombination rates R = C/µ. The dotted lines mark the ’true’ values.



Ignoring recombination
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Ratio of recombination rate versus mutation rate R
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Averages with 95% credibility intervals of runs with different mutation-scaled
recombination rates R = C/µ. The dotted lines mark the ’true’ values.
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Averages with 95% credibility intervals of runs with different mutation-scaled
recombination rates R = C/µ. The dotted lines mark the ’true’ values.
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∼500 simulated datasets
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Averages with 95% credibility intervals of runs with different mutation-scaled
recombination rates R = C/µ. The dotted lines mark the ’true’ values.

Downward bias

Ignoring recombination
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Breaking up long sequences
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Calculate the log marginal likelihoods lnmL of models of interest and compare
them. This is familiar to phylogeneticists who use mutation model partitions, but
here they are analyzed independently.

H0: 1 locus lnmL = −1938

H1: 2 loci lnmL = −1878

H2: 3 loci lnmL = −1934



Breaking up long sequences
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Calculate the log marginal likelihoods lnmL of models of interest and compare
them. This is familiar to phylogeneticists who use mutation model partitions, but
here they are analyzed independently.

H0 : lnmL = −1938

H1a : lnmL = −1878

H1b : lnmL = −1918

H2 : lnmL = −1934

Sorting the log marginal likelihoods: H1a > H1b > H2 > H0

Suggests: Pick a two-locus model.



Breaking up long sequences
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We combine now models that represent different breaks in a long sequence
stretch with the population models, and this may even help to get better
population parameter estimates. For example these two models:



100 200 400 800 16003200
Sites per locus

160

140

120

100

80

60

40

20

0
ln

(m
L)

100 200 400 800 16003200
Sites per locus

160

140

120

100

80

60

40

20

0

ln
(m

L)

100 200 400 800 16003200
Sites per locus

160

140

120

100

80

60

40

20

0

ln
(m

L)

100 200 400 800 16003200
Sites per locus

160

140

120

100

80

60

40

20

0

sc
a
le

d
 l
n
(m

L)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Θ
1

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Θ
2

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Θ
3

0.0

0.2

0.4

0.6

0.8

1.0

Θ

Human lipoproteine lipase: Finns
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D. melanogaster Chr 2L
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position: 5 × 106 + 10, 000bpNumber of loci
2100 4102040
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D. melanogaster Chr 2L
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position: 5 × 106 + 10, 000bpNumber of loci
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Chopping a simulated data set
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1 simulated dataset (1000bp)
with high recombination rate C

µ = 1
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Chopping a simulated dataset
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1 simulated dataset (1000bp)
with high recombination rate C
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Chopping a simulated dataset
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1 simulated dataset (1000bp)
with high recombination rate C
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Summary
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