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Using τ scaled by 1/N generations,
two lineages remain distinct with
probability

(1− 1

N
)Nτ → e−τ ,

as N goes to ∞. Kingman’s
n-coalescent generalized the two-
lineages framework to k lineages by
changing τ → τ

(
k
2

)
:

(1−
(
k
2

)
N

)Nτ → e−(k2)τ ,

as N goes to ∞. With τ = t/N the
familiar coalescence formula e−t(

k
2)/N

emerges.
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p(t|N, k) = e−t(
k
2)/N
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k
2

)
N

p(G|N,n) =

k=n∏
k=2

p(t|N, k) =

k=n∏
k=2

e−t(
k
2)/N

(
k
2

)
N

1(
k
2

)
Scaling the time and the population size using
mutation we get the familiar

p(G|Θ, n) =

k=n∏
k=2

(
e−t

k(k−1)
Θ

2

Θ

)
with Θ = 2Nµ

Coalescent is a convolution of exponential distributions
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Time

The coalescent rate changes with every coalescent, but with a fixed rate we recognize
the randomness in the waiting time more easily! When coalescence events are rare
then the Poisson process is a good model for the arrival of the events, the process
has no memory and the waiting times between coalescent events are drawn from an
exponential distribution.

Poisson process and waiting time
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Time

α = 1.0
α = 0.9
α = 0.8

The fractional Poisson distribution extends the standard Poisson distribution with an
additional parameter α adding variability of the waiting times. The time interval between
each pair of consecutive counts follows the non-exponential power-law distribution with
parameter 0<α≤1. Thus, the fractional Poisson process is a non-Markovian counting
process with non-exponential distribution of inter-arrival times.

Fractional Poisson process and waiting time
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When the population size is large (and constant), the number of offspring of
each individual is approximated by a Poisson distribution.
The probability of having n offspring per x generation

P (n, x) =
(nx)n

n!
e−nx,

the parameter n is the average number of offspring per generation.

Poisson process and number of offsprings
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The fractional Poisson distribution extends the standard Poisson distribution with an
additional parameter α adding variability to the number of offspring per individual, we
can calculate the probability of n offsprings in x generations as

P (n, x) =
(ςxα)n

n!

∞∑
k=0

(k + n)!

k!

(−ςxα)k

Γ(α(k + n) + 1)

Fractional Poisson process and number of offspring
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The fractional Poisson distribution extends the standard Poisson distribution with an
additional parameter α adding variability to the number of offspring per individual, we
can calculate the probability of n offsprings in x generations as

P (n, x) =
(ςxα)n

n!

∞∑
k=0

(k + n)!

k!

(−ςxα)k

Γ(α(k + n) + 1)

This includes the standard Poisson distribution, with ς = n, for example n = 1 for the
Wright-Fisher model, and α = 1 the fractional Poisson becomes

P (n, x) =
xn

n!

∞∑
k=0

(k + n)!

k!

(−x)k

Γ(k + n+ 1)
=
xn

n!

∞∑
k=0

(k + n)!

k!

(−x)k

(k + n)!
=
xn

n!
e−x

Fractional Poisson distribution and number of offspring
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If we assume that the expected number of offspring depends on α, then the
probability that two randomly selected individuals have not the same parent in
the previous generation is

1− 1

Γ(α+ 1)N
,

Using time τα scaled by 1/N generations, two lineages remain distinct with
probability (

1− 1

Γ(1 + α)N

)Nτα
−−−→ e

− τα

Γ(α+1)
α=1−−−→ e−τ

Using the Fractional Poisson distribution
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If we assume that the expected number of offspring depends on α, then the
probability that two randomly selected individuals have not the same parent in
the previous generation is

1− 1

Γ(α+ 1)N
,

More interesting are results with α<1: Using time τα scaled by 1/N
generations, two lineages remain distinct with probability(

1− 1

Γ(1 + α)N

)Nτα
−−−→ e

− τα

Γ(α+1) −→ Eα(−τα)

Using the Fractional Poisson distribution
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The Mittag-Leffler function

Eα(x) =

∞∑
n=0

xn

Γ(αn+ 1)
, α > 0, x ∈ C.

generalizes the exponential function, with α=1 the Mittag-Leffler becomes the Exponential
function

=

∞∑
n=0

xn

Γ(n+ 1)
=

∞∑
n=0

xn

n!
= ex.

Mittag-Leffler function and Exponential function
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The Mittag-Leffler function can be expressed as a mixture of exponentials

Eα(−λxα) =

∫ ∞
0

ω(κ, α)e−κxdκ,

where ω(κ, α) is a probability density. The discrete form can be written as

Eα(−λxα) =
∑
k

ω(κk, α)(1− κk
1

n
)xn.

Mittag-Leffler function and Exponential Distribution
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Offspring number is variable
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The habitat affects the potential of
producing offspring and the quality
differences are unpredictable. This
will lead to a higher variance of the
number of offspring: the Canning
model allows arbitrary fixed variance
of offspring number. We can treat this
variance as a random variable.

Offspring number is variable
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The Canning model allows an arbitrary
fixed variance of offspring number σ. We
can extend the Canning model and treat
this variance as a random variable.

P{not coal |σ2 = σ2
j} =

(
1−

σ2
j

N

)Nτ
.

Offspring number is variable
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The Canning model allows an arbitrary
fixed variance of offspring number σ. We
can extend the Canning model and treat
this variance as a random variable.

P{not coal |σ2 = σ2
j} =

(
1−

σ2
j

N

)Nτ
.

The Mittag-Leffler function with parameter α can be used
to approximate this system:

Eα(−τα) =
∑
j

ω(σ2
j , α)

(
1− σ2

j

1

N

)Nτ
For more than two lineages the waiting time to the next
coalescent is

Eα(−
(
k

2

)
τα)

Offspring number is variable

18 /24 c©2018 Mashayekhi and Beerli



When we replace the scaled time τ with uk

(Nµ)
1
α
, where uk

has been scaled by mutation (µ
1
α), we can rewrite

Eα(−
(
k

2

)
uαk
Nµ

)→ Eα(−k(k − 1)

Θ
uαk ).

finally, using λk = k(k−1)
Θ with Θ = 2Nµ, we can get the

fractional equivalent of Kingman’s coalescent”

p(G|Θ, n) =
n∏
k=2

uα−1
k

2

Θ
Eα(−λkuαk )

Offspring number is variable
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Analytical distribution of the probability of the time to the most recent common ancestor
for various α for a samples size of n = 5.

Time to the most recent common ancestor
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f-coalescent α=0.9
f-coalescent α=0.6
n-coalescent
n-coalescent g=-500
n-coalescent g=500

Time to most recent common ancestor
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Empirical distribution of the time of the most recent common ancestor for various
coalescents: (A) strictly bifurcating; (B) fractional coalescent versus n-coalescent and
multifurcating Bolthausen-Sznitman coalescent. The x-axis is truncated at 0.03. Each
curve represent a histogram of 100,000 draws of the TMRCA.

Time to the most recent common ancestor: Comparison
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Model selection using relative marginal
likelihoods of a Plasmodium falciparum
(circle), a H1N1 influenza (star), and
a Humpback whale mtDNA (diamond)
dataset.

Different α: model comparison with real data
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Model selection using relative marginal
likelihoods of a Plasmodium falciparum
(circle), a H1N1 influenza (star), and
a Humpback whale mtDNA (diamond)
dataset.

Influenza model with Θ and growth is
118 ln mL units worse than best model!

Different α: model comparison with real data
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