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Essentially, all models are
wrong, but some are useful.

Box, George E. P.; Norman R. Draper
(1987). Empirical Model-Building and
Response Surfaces, p. 424, Wiley.
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Population models
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Population size = f(Alleles,Mutation,Migration, population size in last generation)

Nt = f(X,µ,m,Nt�1)

Simply looking only at a single population this is

Nt = f(X,µ,Nt�1)
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Coalescence theory
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Coalescence theory
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Variability of the coalescent process
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All genealogies were simulated with the same population size Ne = 10, 000



Variability of the coalescent process
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Population Parameter Inference
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The relationship among individuals can be
expressed, looking backward in time, by a
waiting process where random lineages

coalesce

migrate between populations

split off an ancestral population

Population model
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Each of these processes can be expressed as a
waiting time process with rate � for N populations
and kj lineages in population j:
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NX
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⇤using a Normal distribution to model the splitting time
between two populations.

Population genetics
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P (⇥|D1,D2, ..., µ) =
P (⇥)P (D1,D2, ...|⇥)

P (D1,D2, ...)
=
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R
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KY
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⇥ vector of parameters for population size, migration and splitting
parameters.

D1,D2, ... independent genetic sequence data,
µ mutation model,
G nuisance genealogies that we integrate out (we are interested in the

parameters not the trees).
x the particular event on the genealogy
K number of total events on the genealogy

Combining the parts
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p(D|⇥) =

Z

G
p(G|⇥)p(D|G)dG

The number of possible genealogies is very
large and for realistic data sets, programs
need to use Markov chain Monte Carlo
methods.

Finally....
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Naive integration approach
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Naive integration approach
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Another naive integration approach
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Metropolis-Hastings algorithm
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Metropolis-Hastings algorithm
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Metropolis-Hastings algorithm
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Metropolis-Hastings algorithm
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Metropolis-Hastings algorithm
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Metropolis-Hastings algorithm
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Metropolis-Hastings algorithm
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So many models – so little time

Photo CC Wikimedia Wolfgang Sauber53 /77 c�2019 Peter Beerli
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Different structural models
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More different structural models
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Even more different structural models
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Model comparison
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With a criterium such as likelihood we can compare nested models. Commonly
we use a likelihood ratio test (LRT) or Akaike’s information criterion (AIC)
to establish whether phylogenetic trees are statistically different or mutation
models have an effect on the outcome, etc.

Kass and Raftery (1995) popularized the Bayes Factor as a Bayesian alternative
to the LRT.



Bayesian inference
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Bayes factor
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Theoretically, we can calculate the posterior probability density of the model

p(M1|X) =
p(M1)p(X|M1)

p(X)



Bayes factor
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Theoretically, we can calculate the posterior probability density of the model 1
and model 2

p(M1|X) =
p(M1)p(X|M1)

p(X)

p(M2|X) =
p(M2)p(X|M1)

p(X)



Bayes factor
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Theoretically, we can calculate the posterior probability density of the model 1
and model 2

p(M1|X)

p(M2|X)
=

p(M1)p(X|M1)
p(X)

p(M2)p(X|M1)
p(X)



Bayes factor
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We could look at the posterior odds ratio or equivalently the Bayes factors.
p(M1|X)

p(M2|X)
=

p(M1)

p(M2)
⇥ p(X|M1)

p(X|M2)

BF =
p(X|M1)

p(X|M2)
LBF = 2 lnBF = 2 ln

✓
p(X|M1)

p(X|M2)

◆



Bayes factor
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BF =
p(X|M1)

p(X|M2)
LBF = 2 lnBF = 2 ln

✓
p(X|M1)

p(X|M2)

◆

The magnitude of BF gives us evidence against or for hypothesis M2

LBF = 2 lnBF = z

8
>>>><

>>>>:

0 < |z| < 2 No real difference
2 < |z| < 6 Positive
6 < |z| < 10 Strong
|z| > 10 Very strong



Bayes factor example
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M1 = M2 =

LBF = 2 lnBF = 2 ln

✓
p(X|M1)

p(X|M2)

◆
= 2(�9638.69)� (�9641.01) = 4.64

The magnitude of BF gives us evidence against or for hypothesis M2

LBF = 2 lnBF = z

8
>>>><

>>>>:

0 < |z| < 2 No real difference
2 < |z| < 6 Positive
6 < |z| < 10 Strong
|z| > 10 Very strong



Posterior model probability
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(example continued)

M1 = M2 =

Instead of calculating the Bayes factor
we could use the probability of all tested
models Mi and use them as weights (cf.
Burnham and Anderson,1998)

p
⇤
i =

p(X|Mi)P
j p(X|Mj)

,

X

i

p
⇤
i = 1, `1 = �9638.61, `2 = �9641.01

p
⇤
1 =

exp(`1)

exp(`1) + exp(`2)
= 0.911

p
⇤
2 =

exp(`2)

exp(`1) + exp(`2)
= 0.089



Marginal likelihood
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Typically, it is rather difficult to calculate the marginal likelihoods with good
accuracy, because most often we only approximate the posterior distribution
using Markov chain Monte Carlo (MCMC).
In MCMC we need to know only differences and therefore we typically do not
need to calculate the denominator to calculate the Posterior distribution p(⇥|X):

p(⇥|X,M) =
p(⇥)p(X|⇥)

p(X|M)
=

p(⇥)p(X|⇥)R
⇥ p(⇥)p(X|⇥)d⇥

where p(X|M) is the marginal likelihood, which we need for our model selection!



Estimation of the marginal likelihood
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Harmonic mean estimator [Kass and Raftery 1995]: methods is easy and
used in many programs, results are biased and overestimate the marginal
likelihood, variance of estimates can be very large.

Thermodynamic integration (Path sampling) [Gelman and Meng 1997,
Lartillot et al. 2006]: method is tedious to compute because several
MCMC chains are needed. Results are accurate and reproducible with small
variance when MCMC runs were run long enough.

Stepping stone approach (Xie et al. 2011)



Population models
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Simulated data
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Two loci simulated from model x0Dx:
Model Log(mL) LBF* Model-probability
-------------------------------------------------------
1: xxxx: -9662.42 -23.73 0.0000
2: xDxx: -9661.98 -23.29 0.0000
3: xxDx: -9661.52 -22.83 0.0000
4: xd0x: -9656.51 -17.82 0.0000
5: xD0x: -9649.33 -10.64 0.0000
6: xx0x: -9648.93 -10.24 0.0000
7: x0dx: -9641.77 -3.08 0.0402
8: x0xx: -9641.01 -2.32 0.0859
9: x0Dx: -9638.69 0.00 0.8739
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Two loci simulated from model x0Dx:
Model Log(mL) LBF* Model-probability
-------------------------------------------------------
1: xxxx: -9662.42 -23.73 0.0000
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3: xxDx: -9661.52 -22.83 0.0000
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5: xD0x: -9649.33 -10.64 0.0000
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We did not include the correct model!
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Two loci simulated from model x0Dx:
Model Log(mL) LBF* Model-probability
-------------------------------------------------------
1:xxxx: -9662.42 -21.41 0.0000
2:xBxx: -9661.98 -20.97 0.0000
3:xxBx: -9661.52 -20.51 0.0000
4:xd0x: -9656.51 -15.50 0.0000
5:xB0x: -9649.33 -8.32 0.0002
6:xx0x: -9648.93 -7.92 0.0002
7:x0dx: -9641.77 -0.76 0.3185
8:x0xx: -9641.01 0.00 0.6811

Best Worst



1    Texas was a refugium from which populations expanded northward into other regions.   
2 P. illinoensis is derived from P. streckeri that expanded through the Arkansas River Valley. 
3    There is detectable genetic structure within P. illinoensis consistent with the disjunct range.
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Fig. 2 Example models compared in MIGRATE-N to make inferences regarding the hypotheses described (1–3). Each circle represents
an effective population size parameter, and each arrow represents a migration parameter. Region labels as in Table 1. Note that only
a subset of the models tested is illustrated; all 24 tested models are shown in Data S1.
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P. illinoensis and the disjunct clusters within this taxon
are differentiated at nuclear microsatellites. Furthermore,
under the evolutionary population concept of Waples &
Gaggiotti (2006), we find that the northern and southern
clusters within P. illinoensis meet even the most stringent
criteria for defining units important for conservation.
In addition to rejecting models of panmixia within
P. illinoensis, the effective number of migrants estimated
(~0.369 between northern and southern P. illinoensis) was
well below the stringent value of Nem = 1, which is the
suggested lower limit for maintaining connectivity in
population management (Mills & Allendorf 1996). These
disjunct clusters are clearly genetically distinct and can
be considered separate management units. We did not
include the central P. illinoensis cluster in these analyses
because of low sample size, although other results
(Fig. 4) indicate these individuals are genetically similar
to the northern cluster.
The allopatric distribution of P. illinoensis, lack of

suitable intermediate habitat and the evidence that the
nearest populations (Clay County, Arkansas) to
P. streckeri are declining (Trauth et al. 2006) underscore
the importance of preserving these populations. Here,
we outline topics that deserve further study, both to
address taxonomy and inform management efforts.

First, additional genetic sampling of P. streckeri in Texas
and surrounding areas is warranted to determine
whether other lineages or management units should be
recognized, and whether geographic range boundaries
need to be redefined. The application of species delimi-
tation methods (e.g. Yang & Rannala 2014) with more
complete geographic sampling across this region may
help resolve the taxonomic issues in this species com-
plex. Behavioural studies that measure male acoustic
signals and test female preferences between multiple
populations of P. streckeri and P. illinoensis may be of
interest to determine the degree of reproductive isola-
tion between these taxa. It would also be useful to
investigate the ecological requirements of both P. streck-
eri and P. illinoensis in relation to available habitat,
given the unique burrowing lifestyle and association
with sand prairies that has been highlighted in P. illi-
noensis (Brown et al. 1972; Axtell & Haskell 1977; Brown
1978). Perhaps most importantly, fine-scale studies of
population connectivity within P. illinoensis incorporat-
ing landscape information will further inform conserva-
tion efforts and population management.

Model testing in phylogeography

As the amount of data in phylogeographic studies con-
tinues to grow rapidly, efforts will need to focus on the
development and refinement of approaches for making
inferences from large data sets (e.g. Carstens et al. 2013;
Smith et al. 2014). In this study, we took the approach
of evaluating models that either support or contradict
previously proposed biogeographic hypotheses.
Although this is not the same as traditional hypothesis
testing in the sense that there is not a null hypothesis to
reject or fail to reject, we demonstrate that model-based
approaches are useful for choosing among a priori
hypotheses to make meaningful inferences. We recog-
nize that there are shortcomings to this strategy, most
important of which is that we may not have considered
a model that could be better supported by the data
(Hickerson 2014). We chose to evaluate a set of models
designed to test specific hypotheses because it is more
tractable than trying to compare all possible models
and provides more useful insights than comparing sev-
eral models that do not have a meaningful biological
interpretation. Emerging methods for generating and
evaluating all or many phylogeographic models for a
given data set (B. C. O’Meara, A. E. Morales-Garci!a,
N. D. Jackson, B. C. Carstens, in review) have the
potential to provide additional insights and may be par-
ticularly useful if limited prior knowledge of the system
in question is available to inform model design.
A significant challenge to phylogeographic research is

the computational effort involved in estimating complex
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0.967 
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1.03 

Fig. 5 Best model tested in MIGRATE-N depicted on species range
map. The mode of each parameter estimate for effective popu-
lation size (h) and migration rate (M, bold text with arrows) is
shown.
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Frog picture: http://mdc.mo.gov/discover-nature/field-guide

Lisa N. Barrow, A. T. Bigelow, C. A.
Phillips, and E. Moriarty Lemmon
(2015) Phylogeographic inference
using Bayesian model comparison
across a fragmented chorus frog
species complex. Molecular Ecology

A real example
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Population splitting
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Model Log(mL) LBF Model-probability

1: 3 species: -15887.49 0.00 1.0000

2: 6 species: -15961.95 -74.46 0.0000

Estimation of splitting dates of 6 subspecies of pygmy rattle snakes
using MIGRATE (data from Kubatko et al. 2011)

S. m. miliaris
S. m. barbouri
S. m. streckeri 

S. c. tergeminus
S. c. edwardsii S. c. catenatus



You may be surprised that your favored
model does not win in a model comparison
competition, but figuring out the model order
leads oftentimes to new insights about the
problem.

Models by themselves are not true or wrong.
BUT they may not fit your data well, OR they
describe your data even when you “know” that
the model is insufficient.

Summary
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Michal Palzcewski,
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Justin Bricker,
Somayeh Mashayekhi,
Kyle Shaw

Lucrezia Bieler http://popgen.sc.fsu.eduNational Science
Foundation

Thank you
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