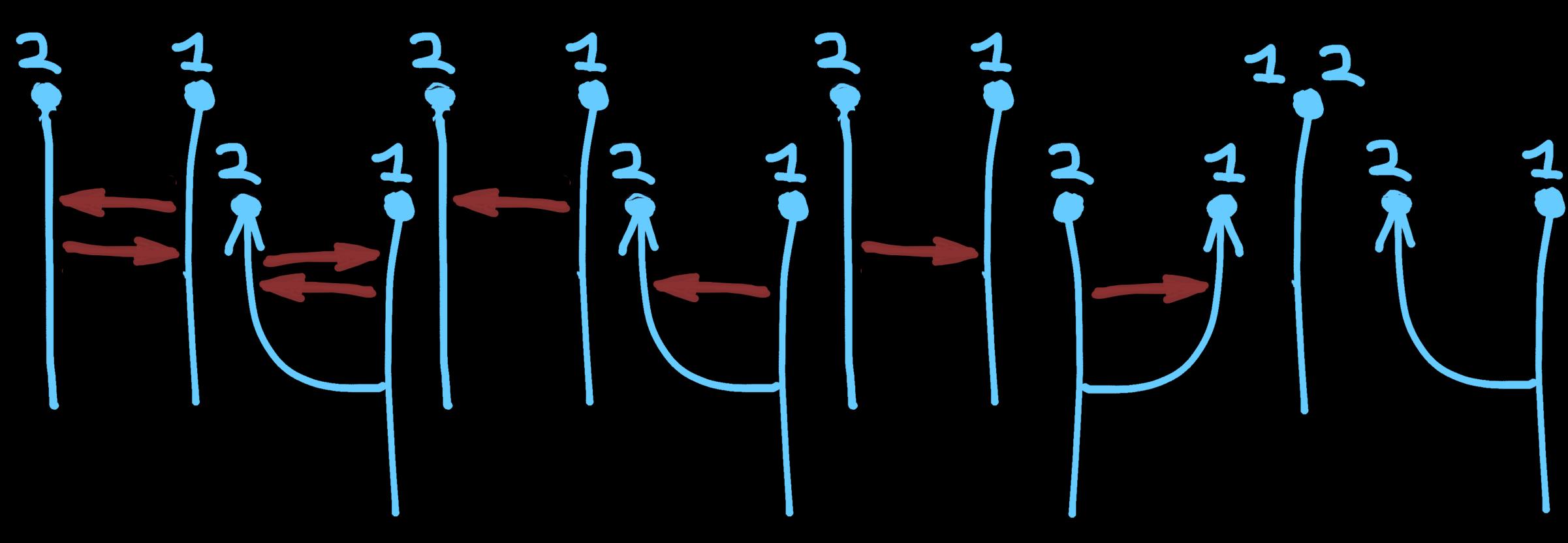
All models are good, but only some are useful



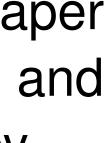
Peter Beerli Scientific Computing, Florida State University

Twitter:@peterbeerli

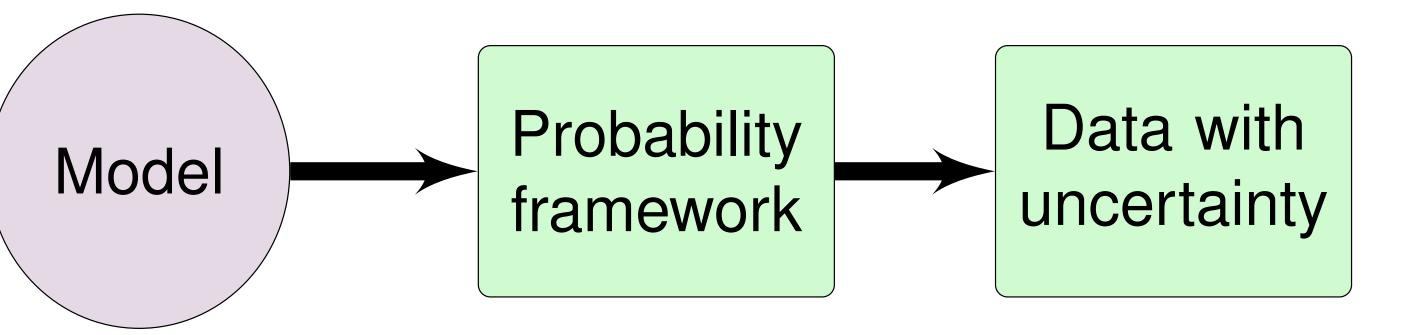
On models

Essentially, all models are wrong, but some are useful.

Box, George E. P.; Norman R. Draper (1987). Empirical Model-Building and Response Surfaces, p. 424, Wiley.

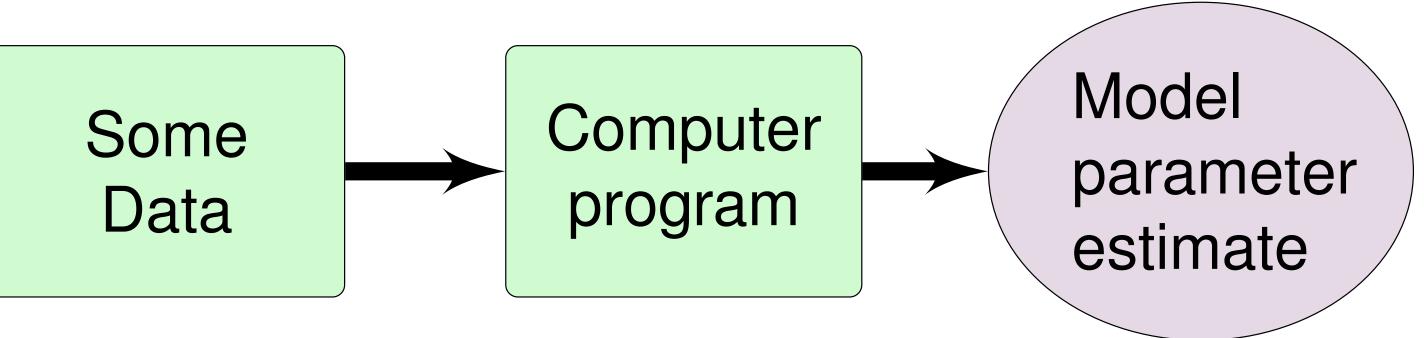


On models and data



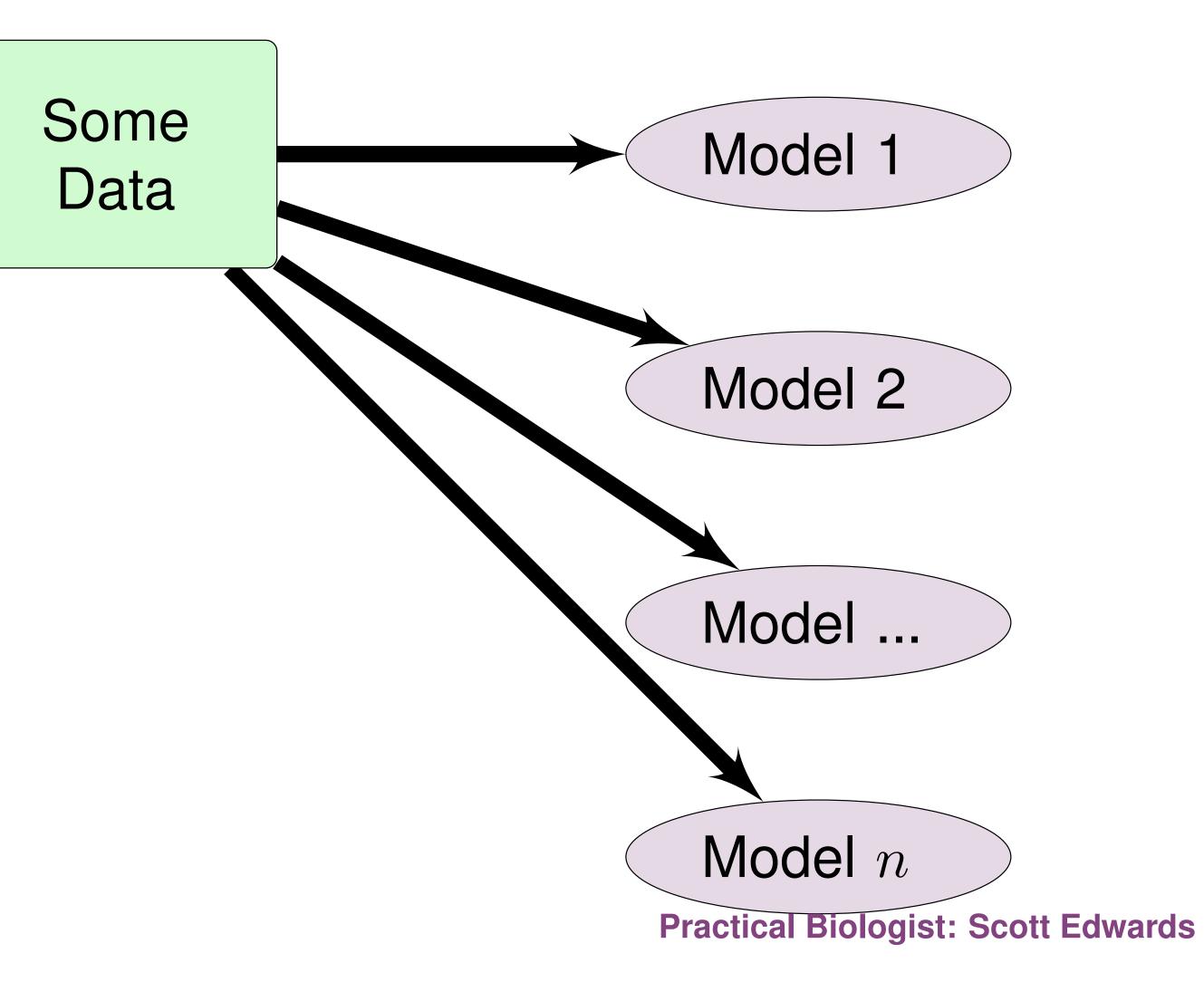
Theoretical Biologist: John Wakeley

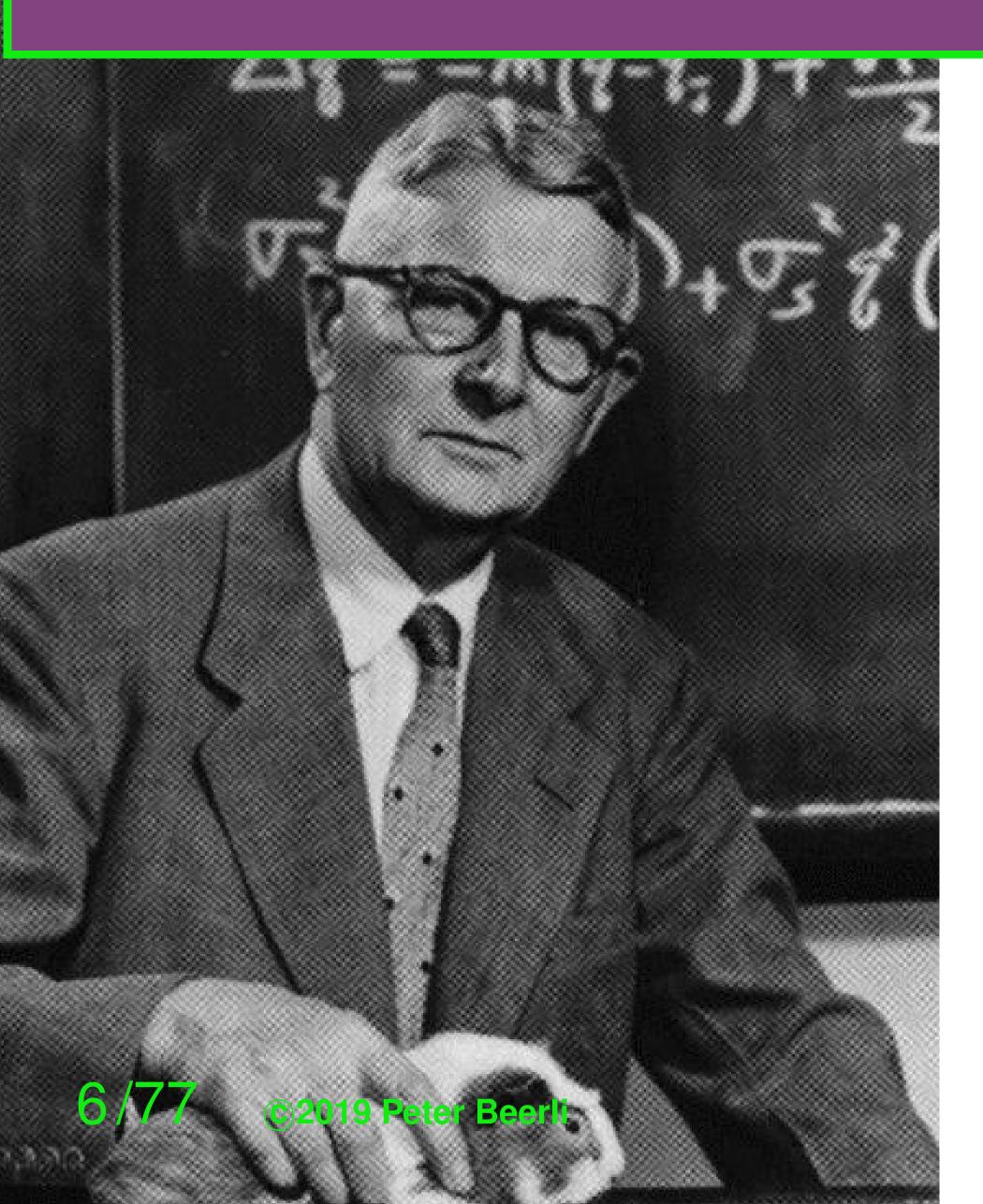
On data and models

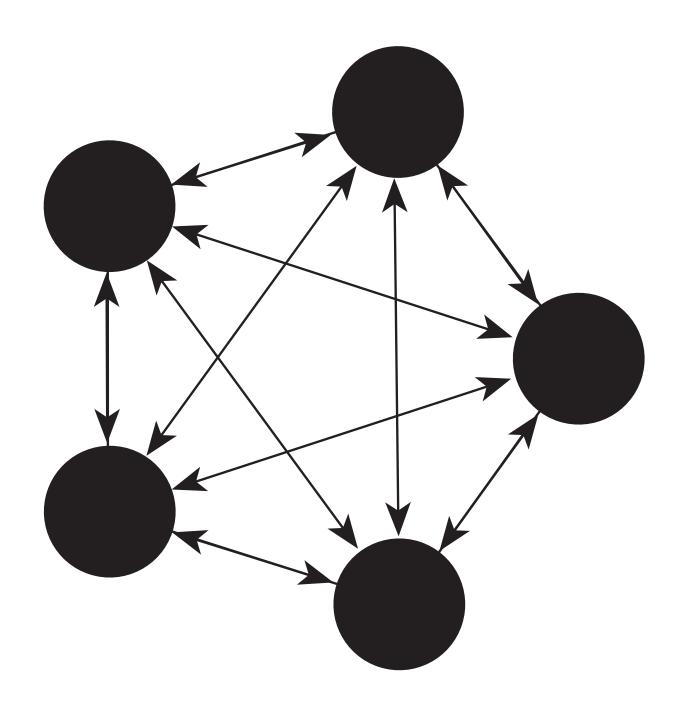


Practical Biologist: Scott Edwards

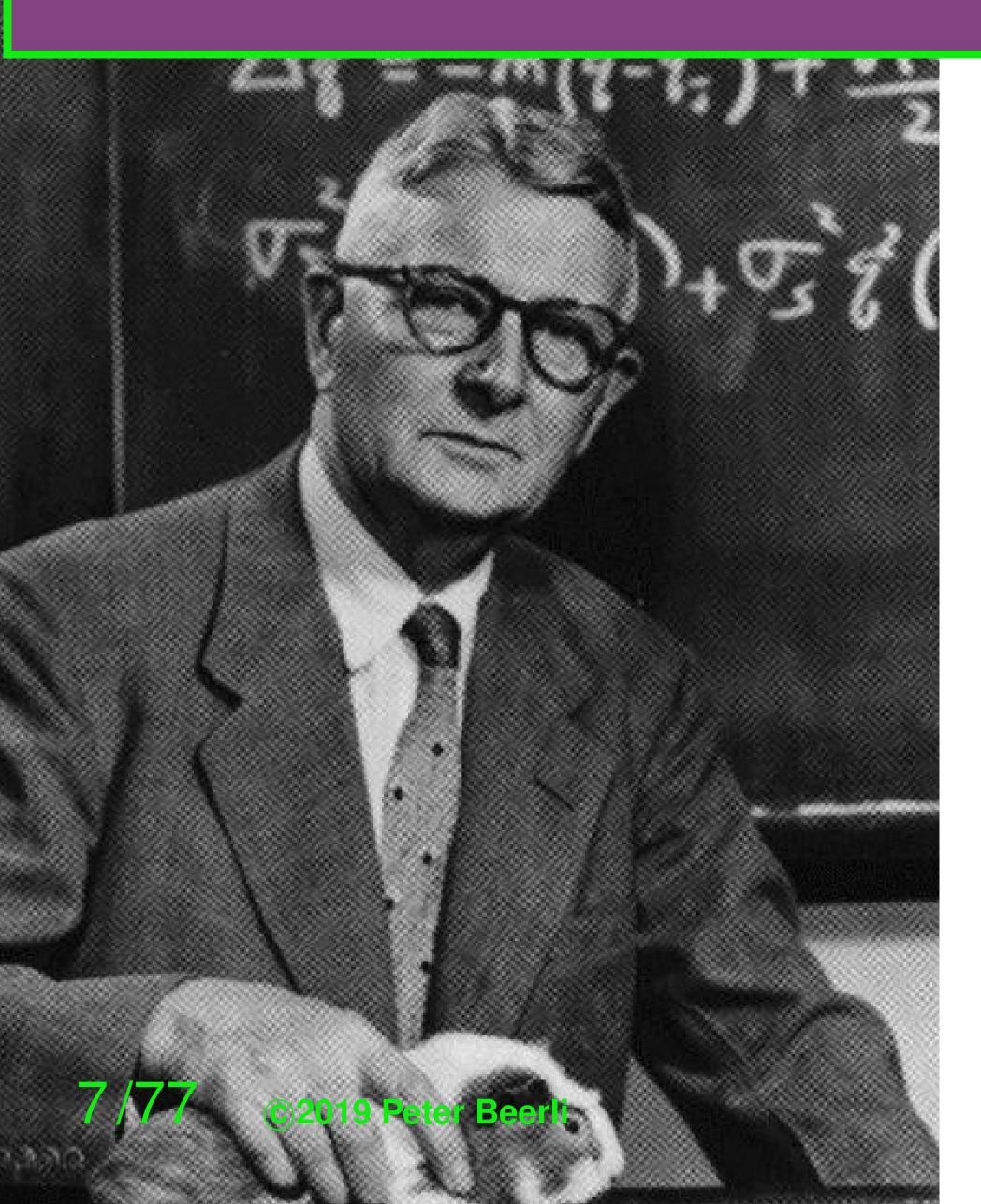
On models and data

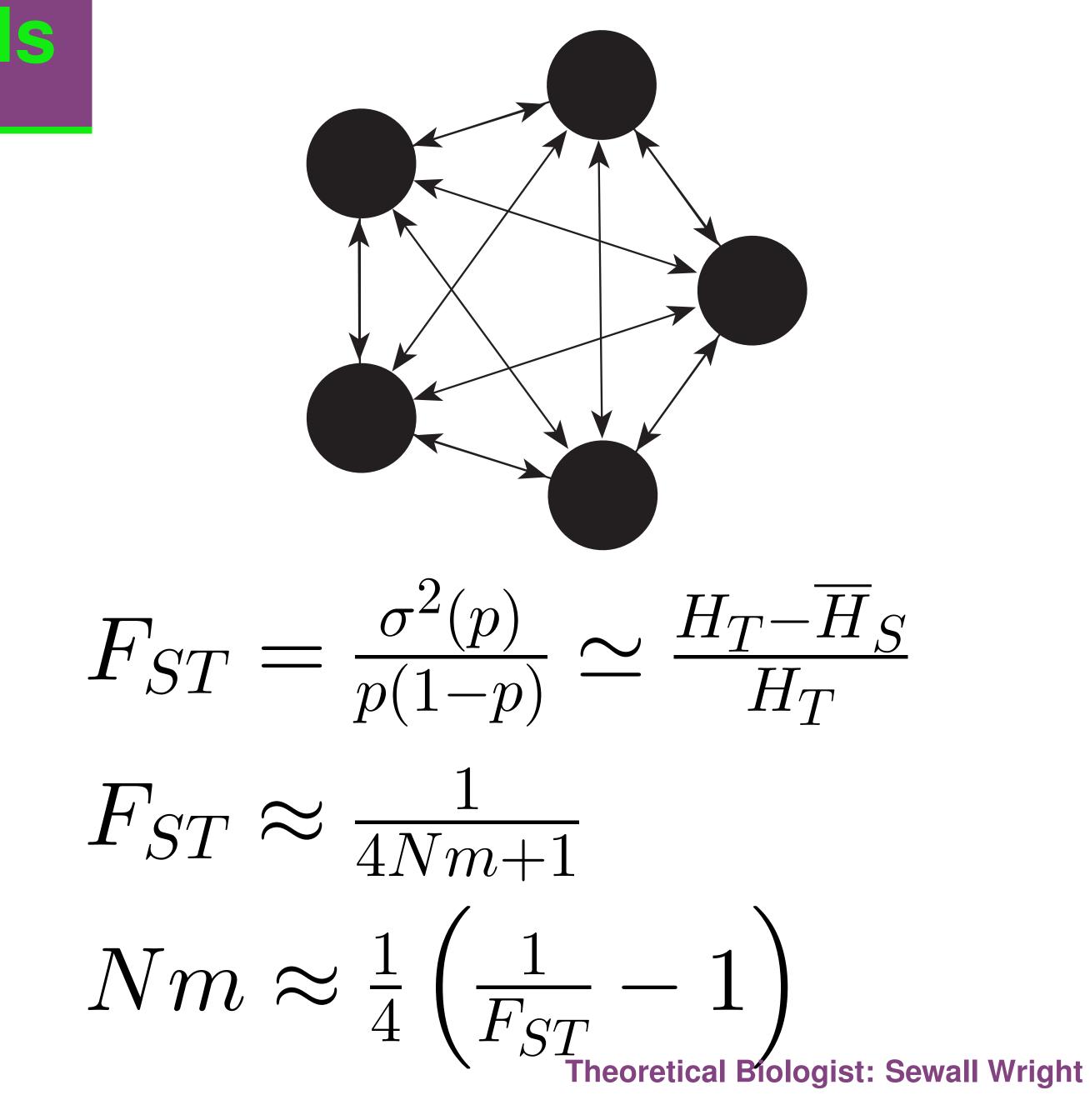


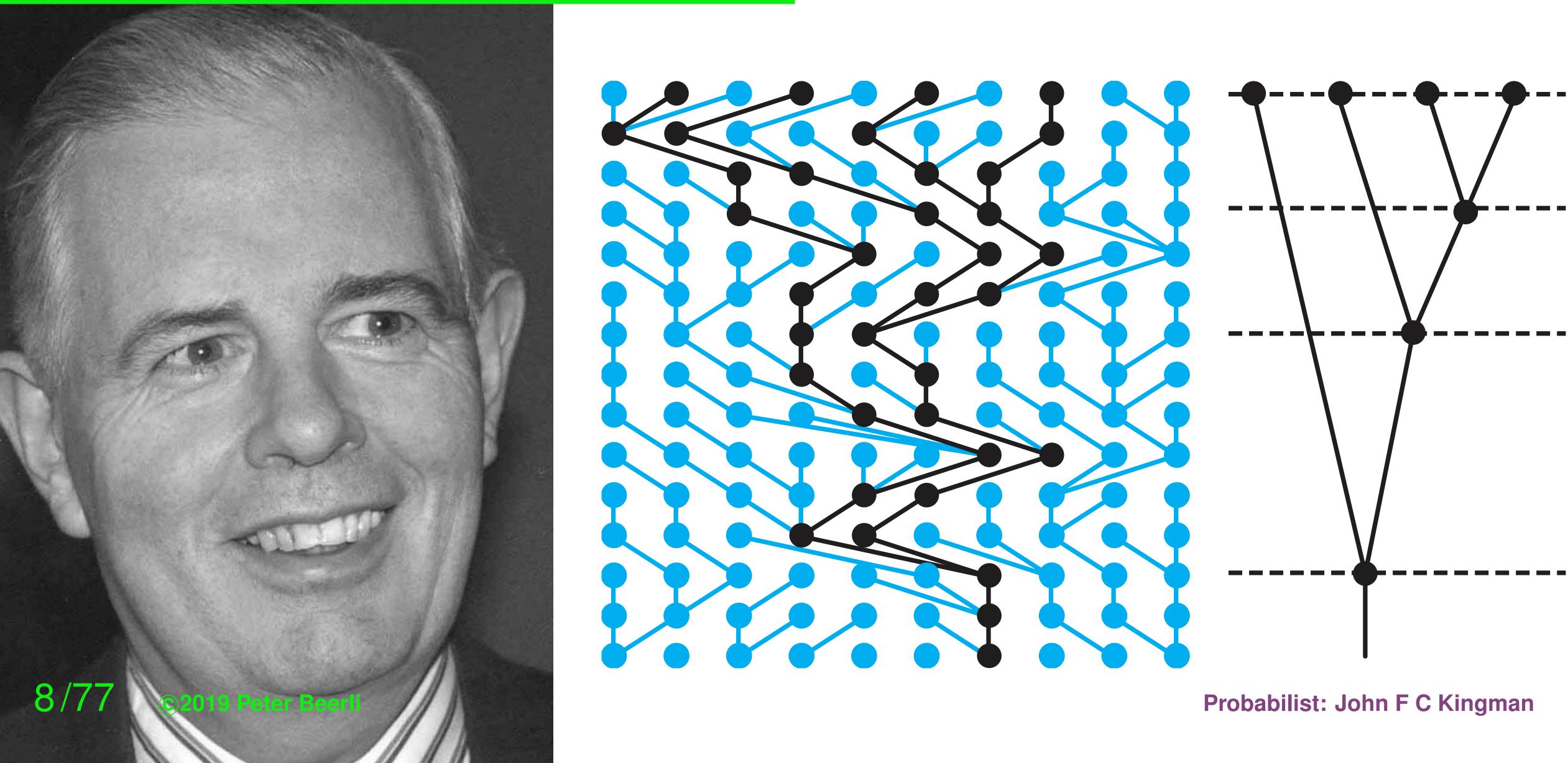


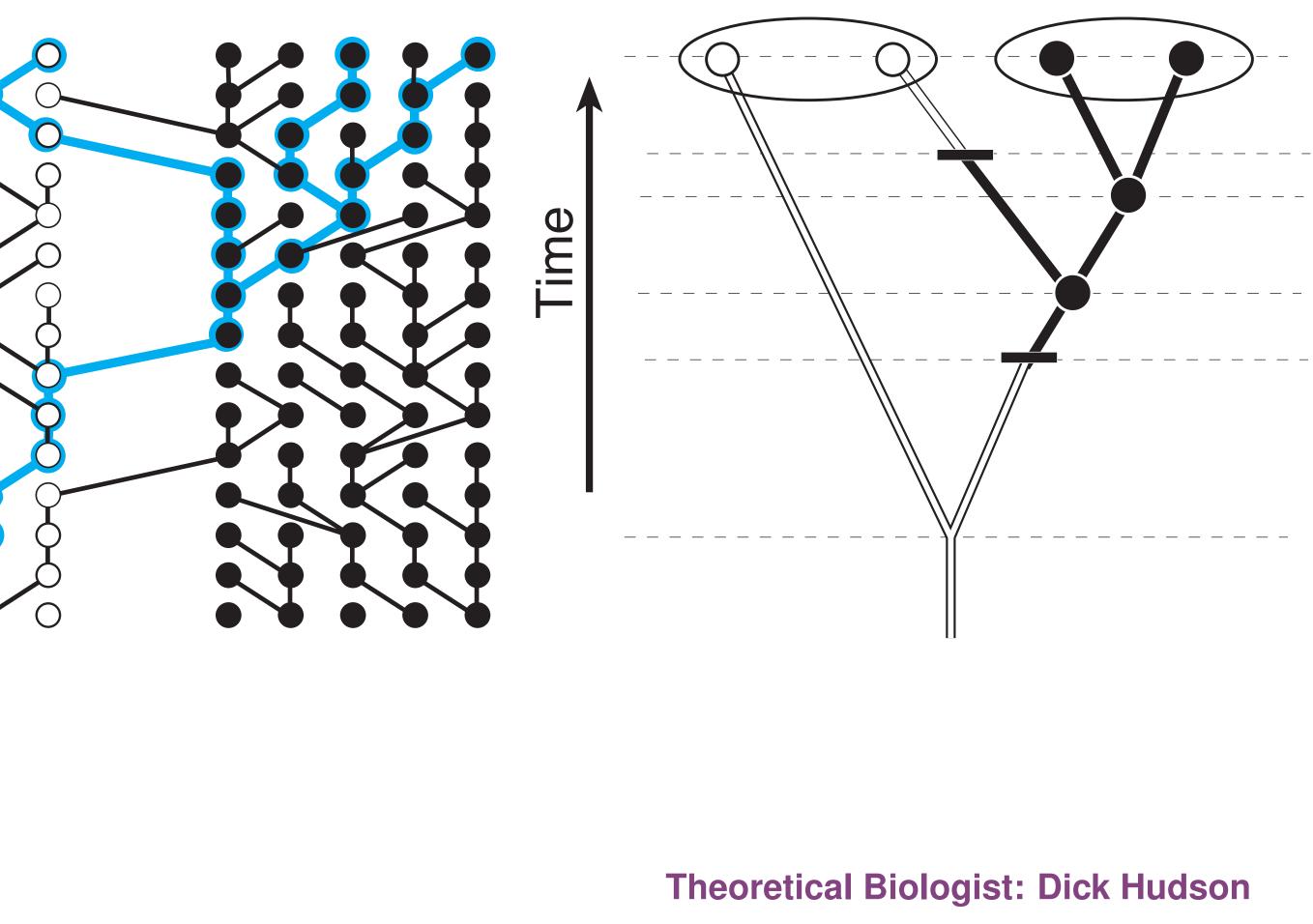


Theoretical Biologist: Sewall Wright

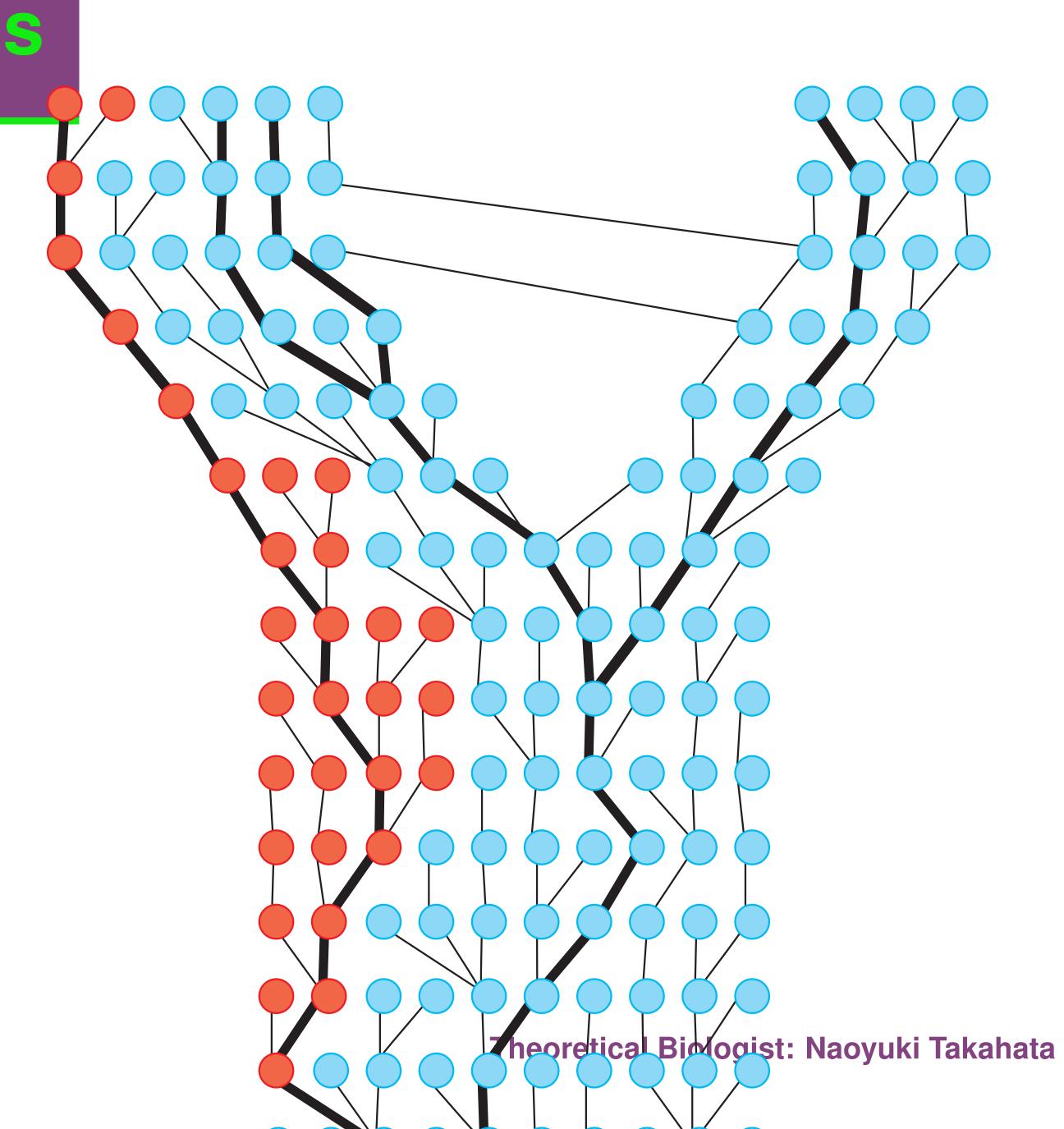


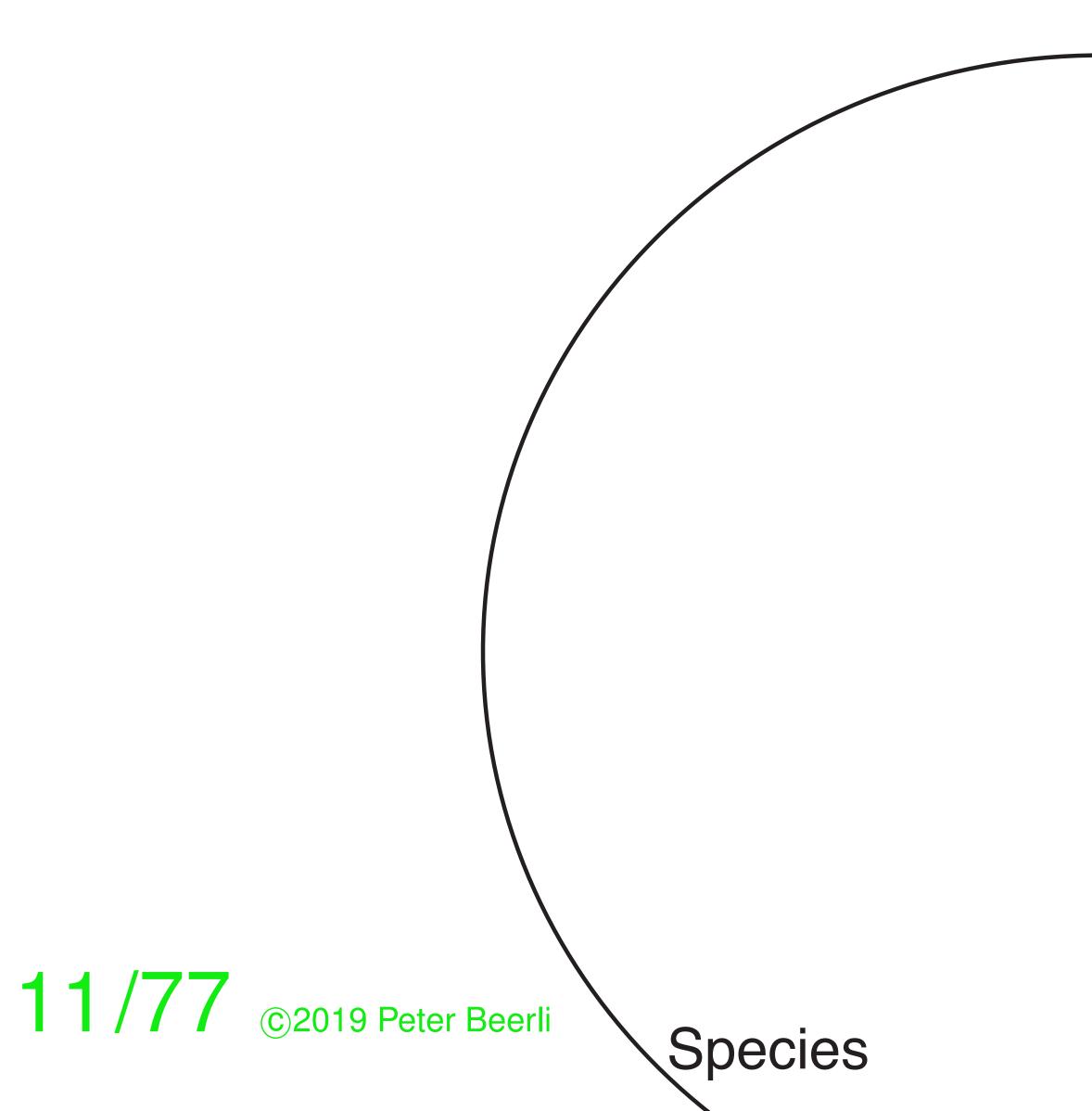


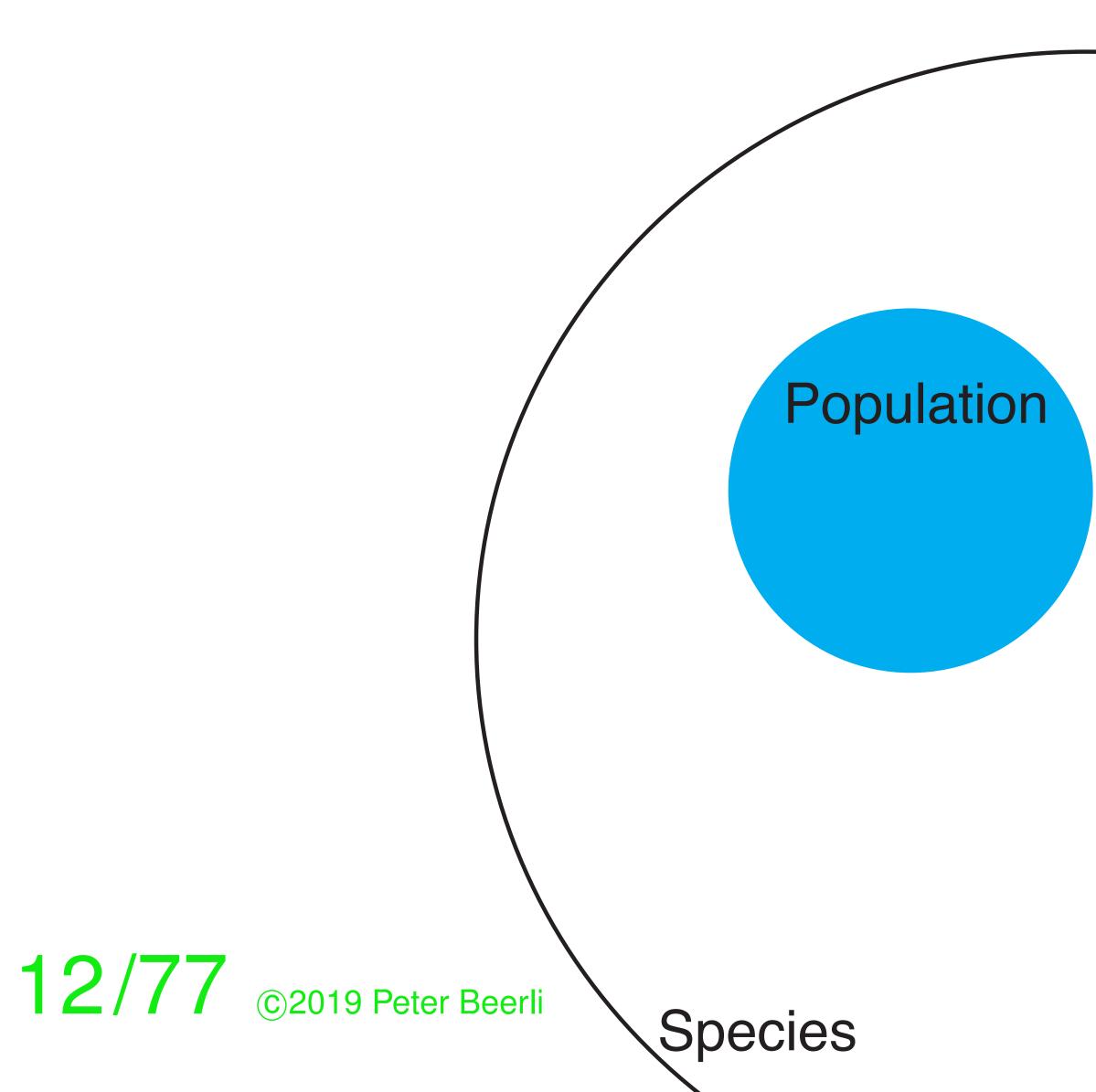


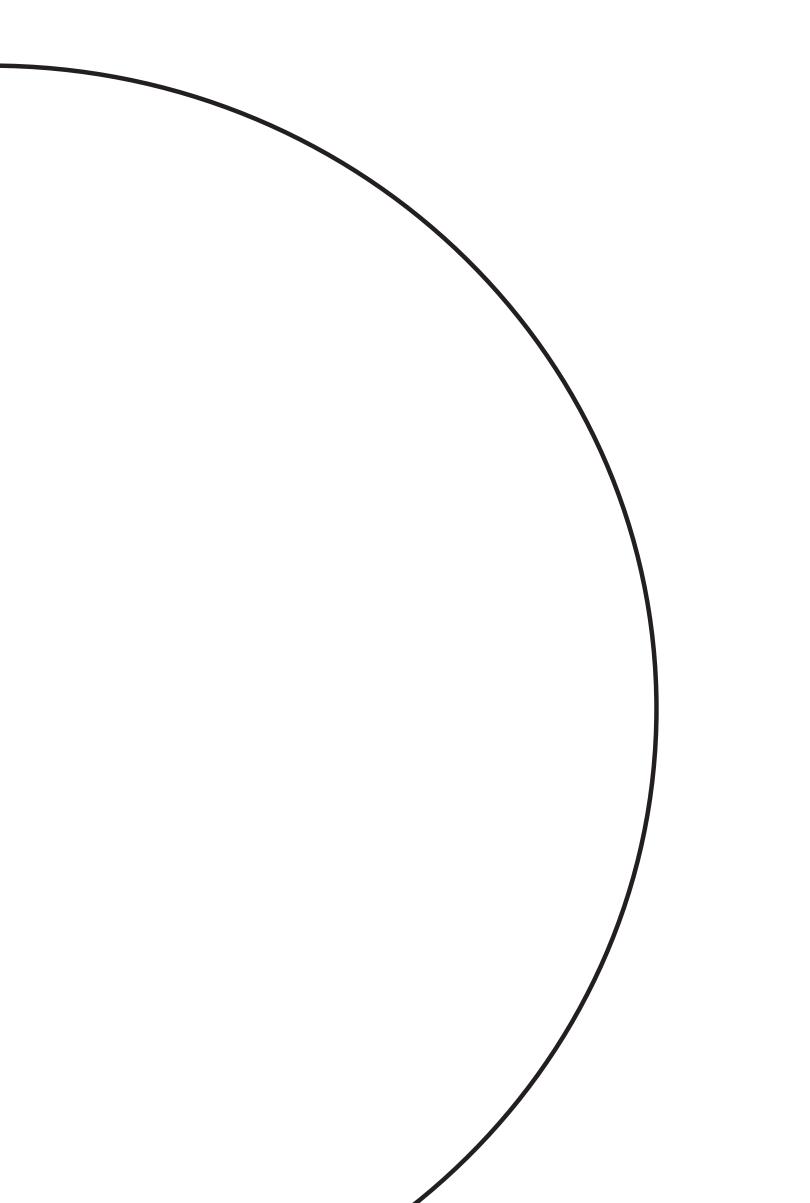


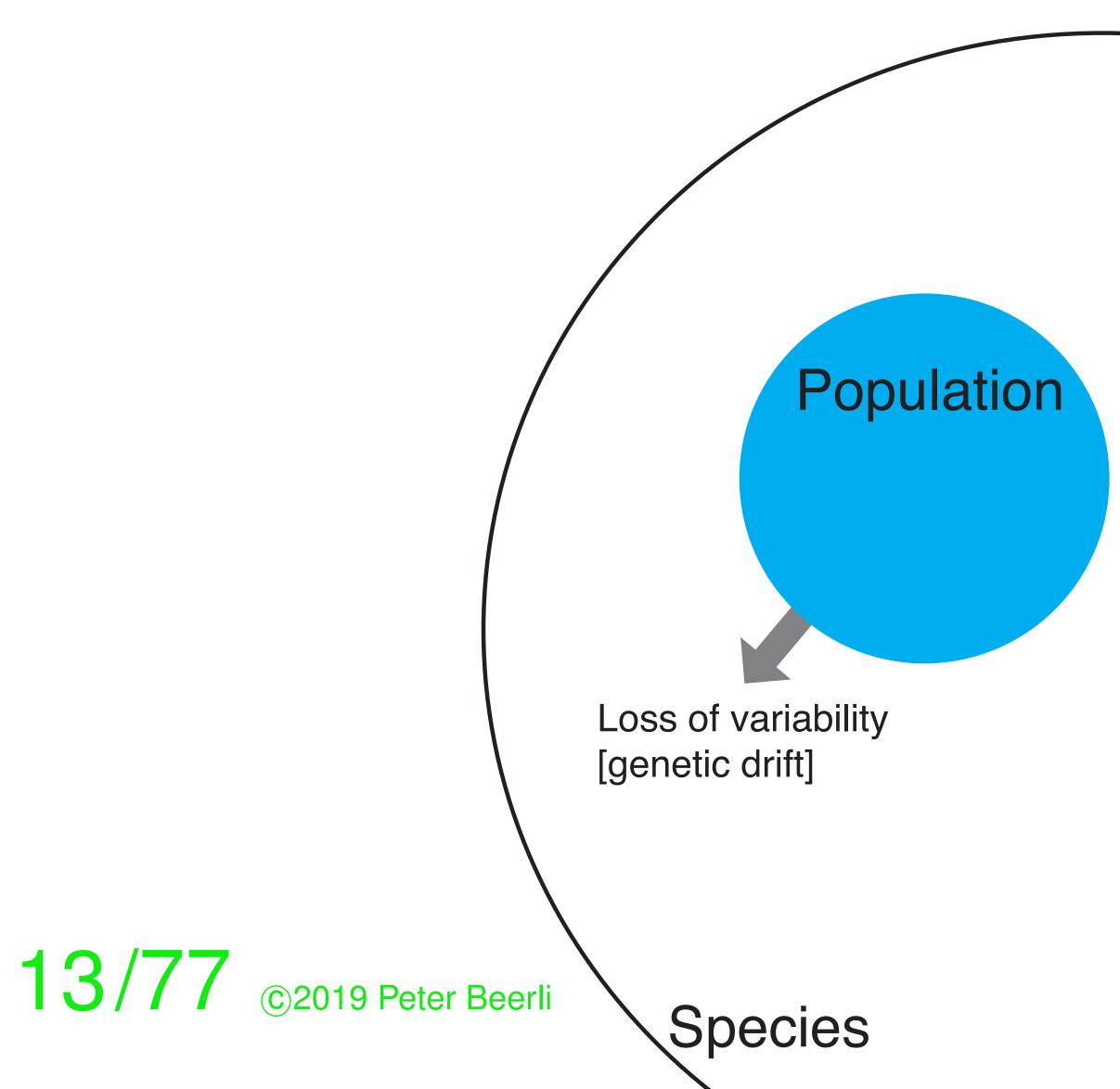
Time

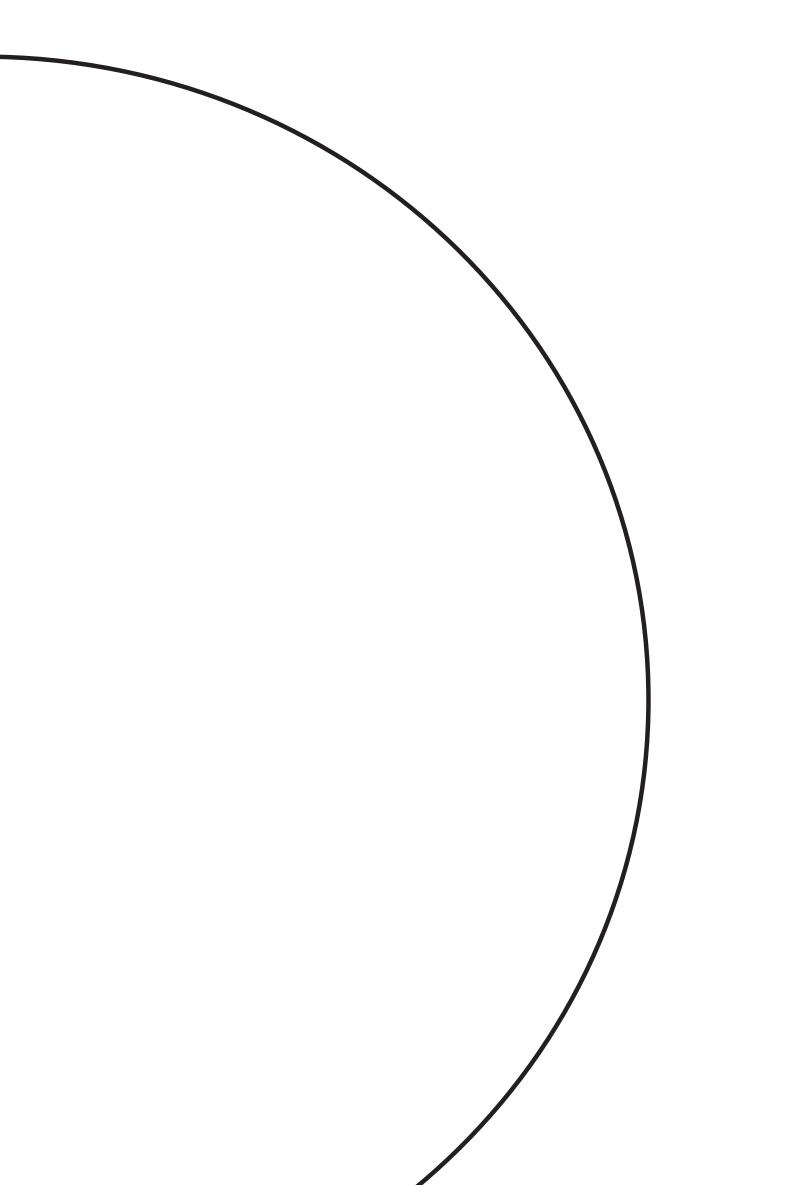


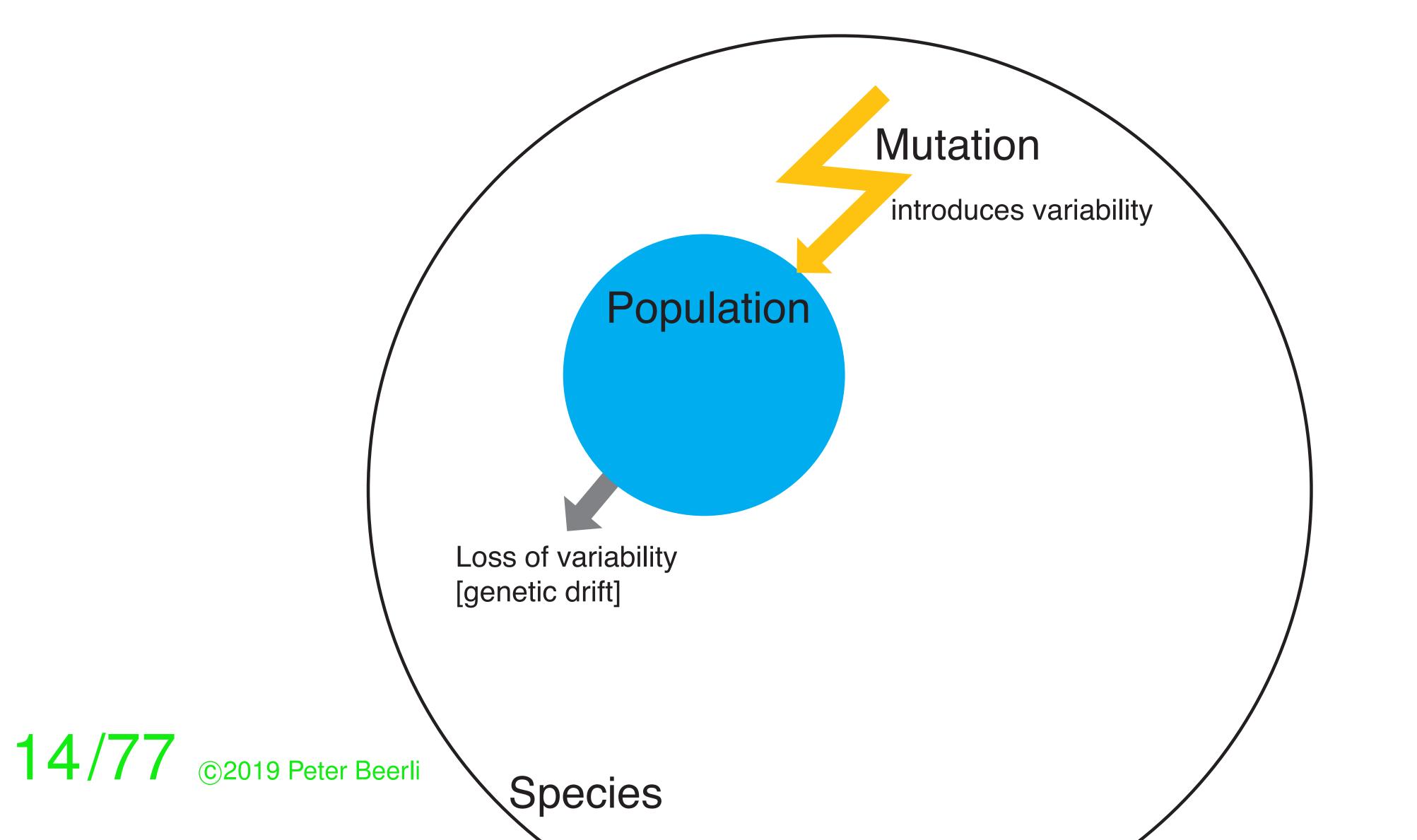








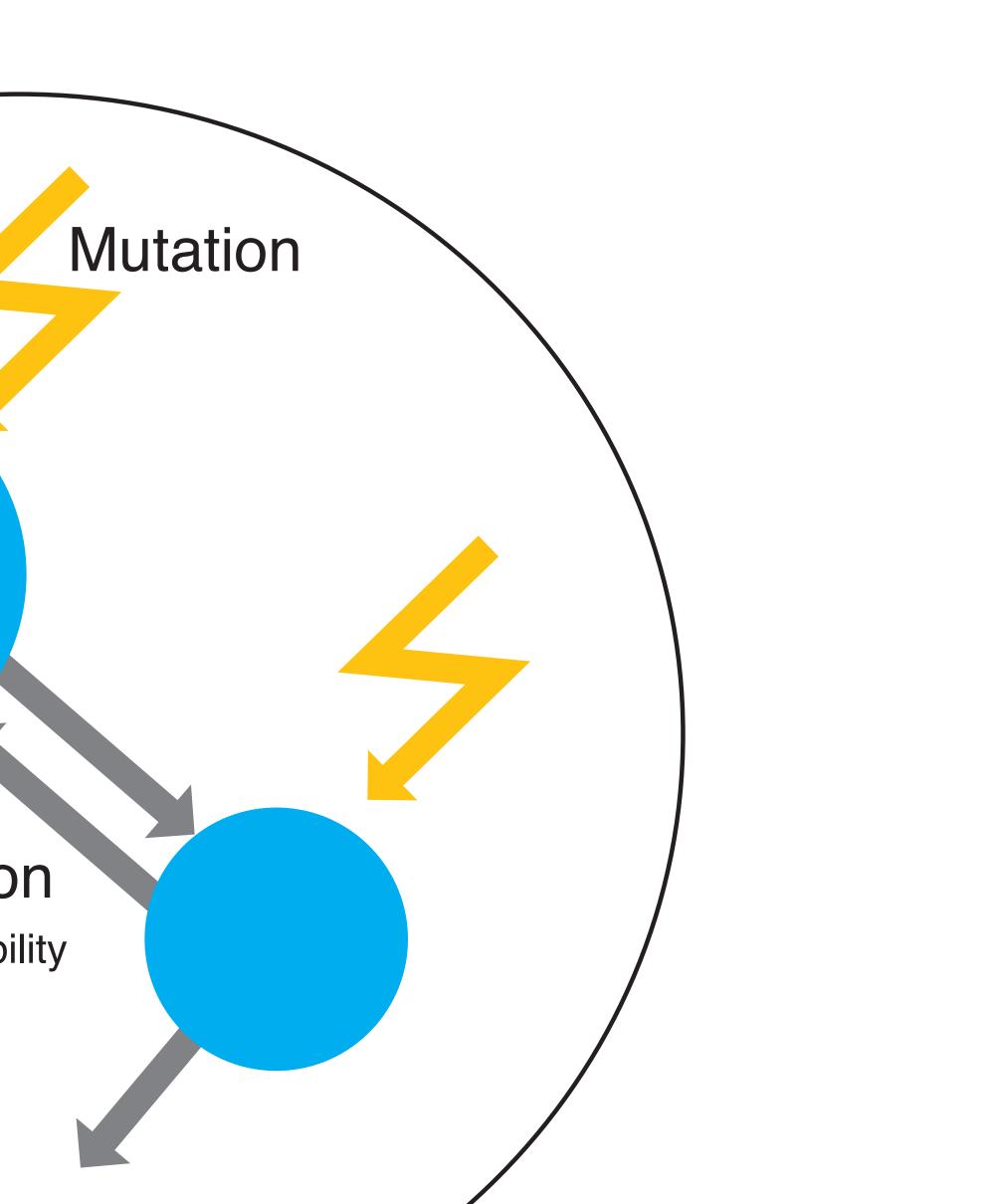




Migration introduces variability

15/77 ©2019 Peter Beerli

Species



Population size = f(Alleles, Mutation, Mi $N_t = f(X, \mu, m, N_{t-1})$

Simply looking only at a single population this is

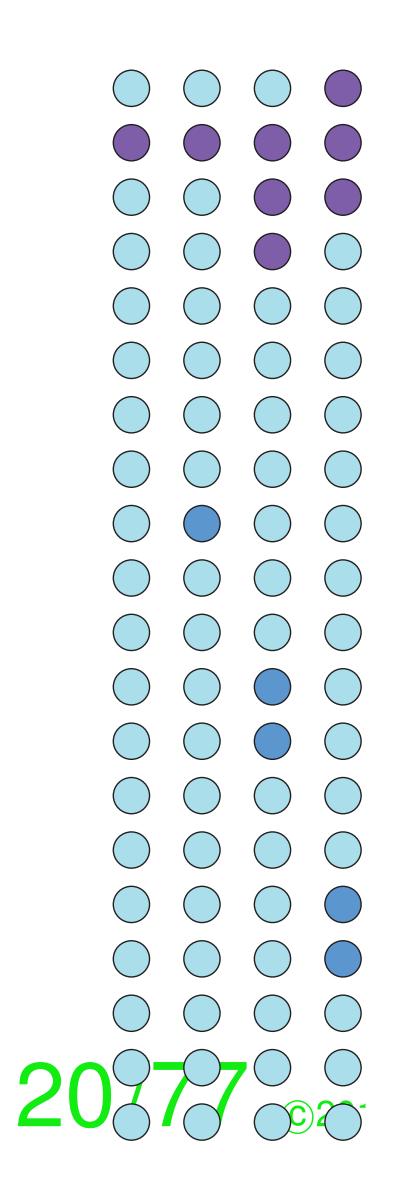
$$N_t = f(X, \mu, N_{t-1})$$

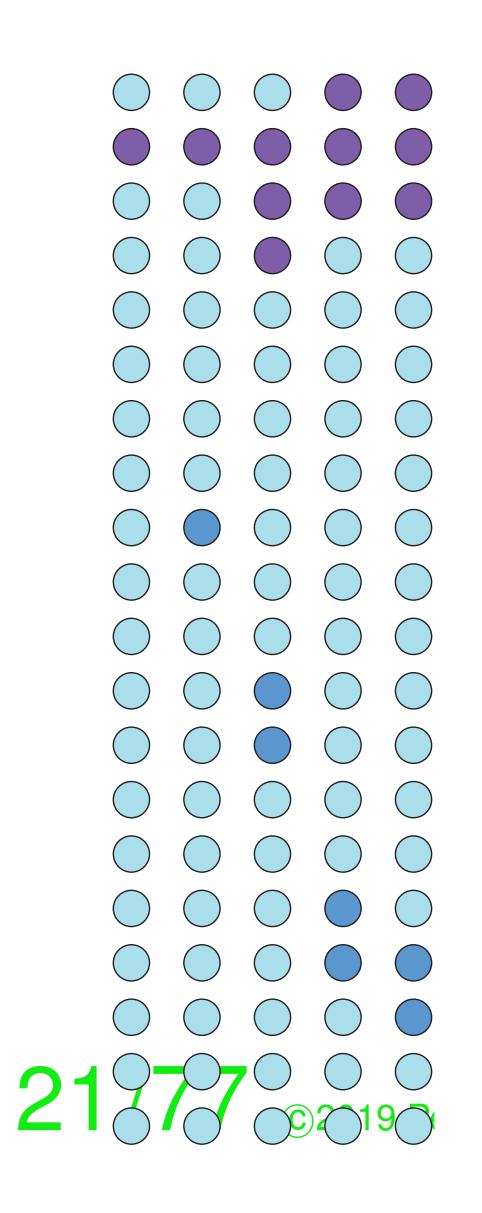
Population size = f(Alleles, Mutation, Migration, population size in last generation)

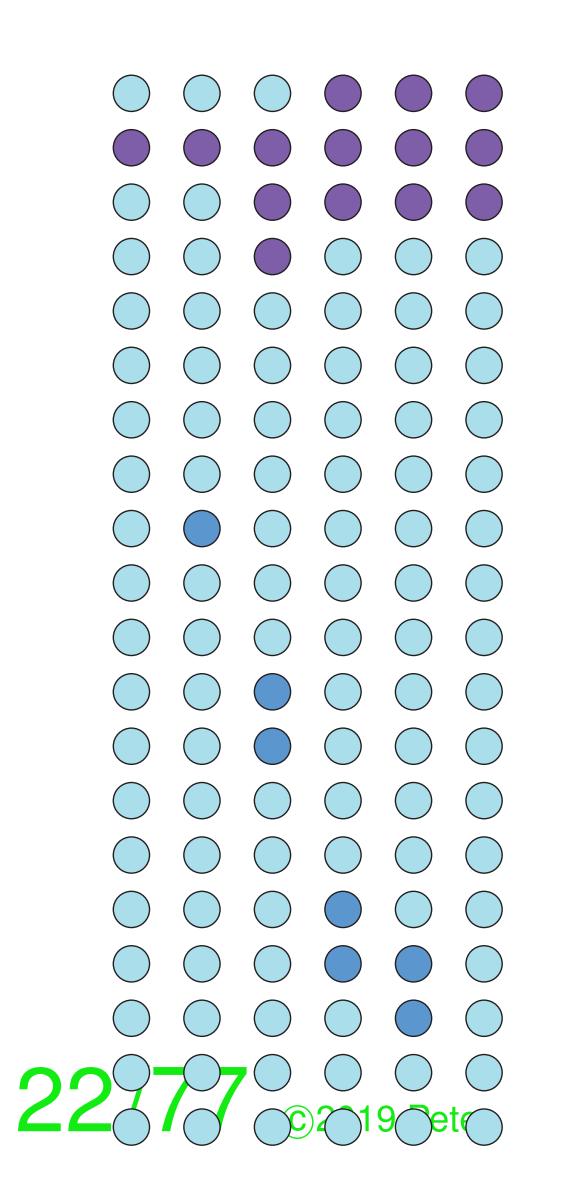
 \bigcap \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc 1707

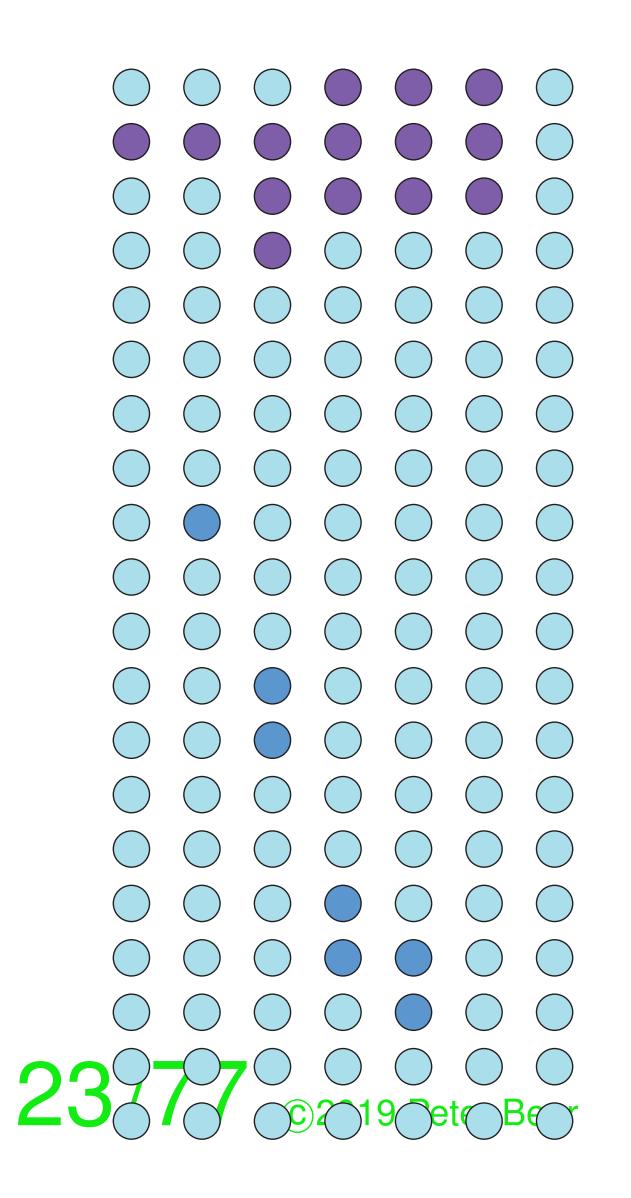
 \bigcirc \bigcirc 18070 18070

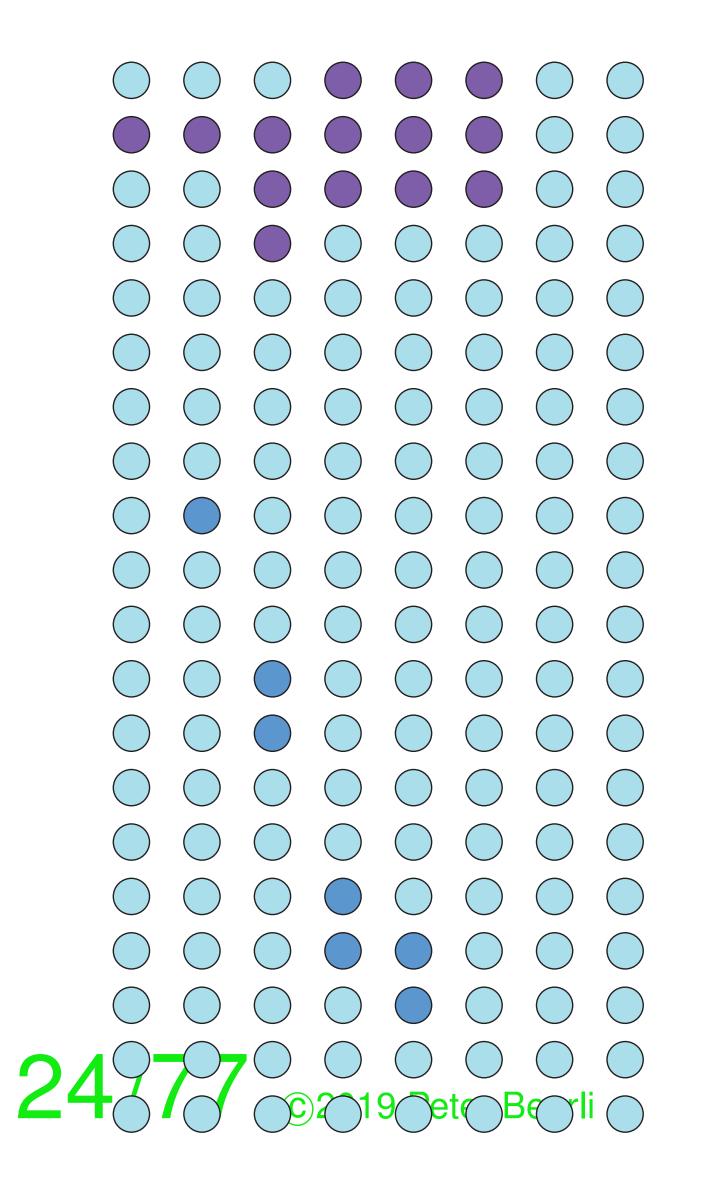
 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc ()() \bigcirc \bigcirc \bigcirc ()()()19000

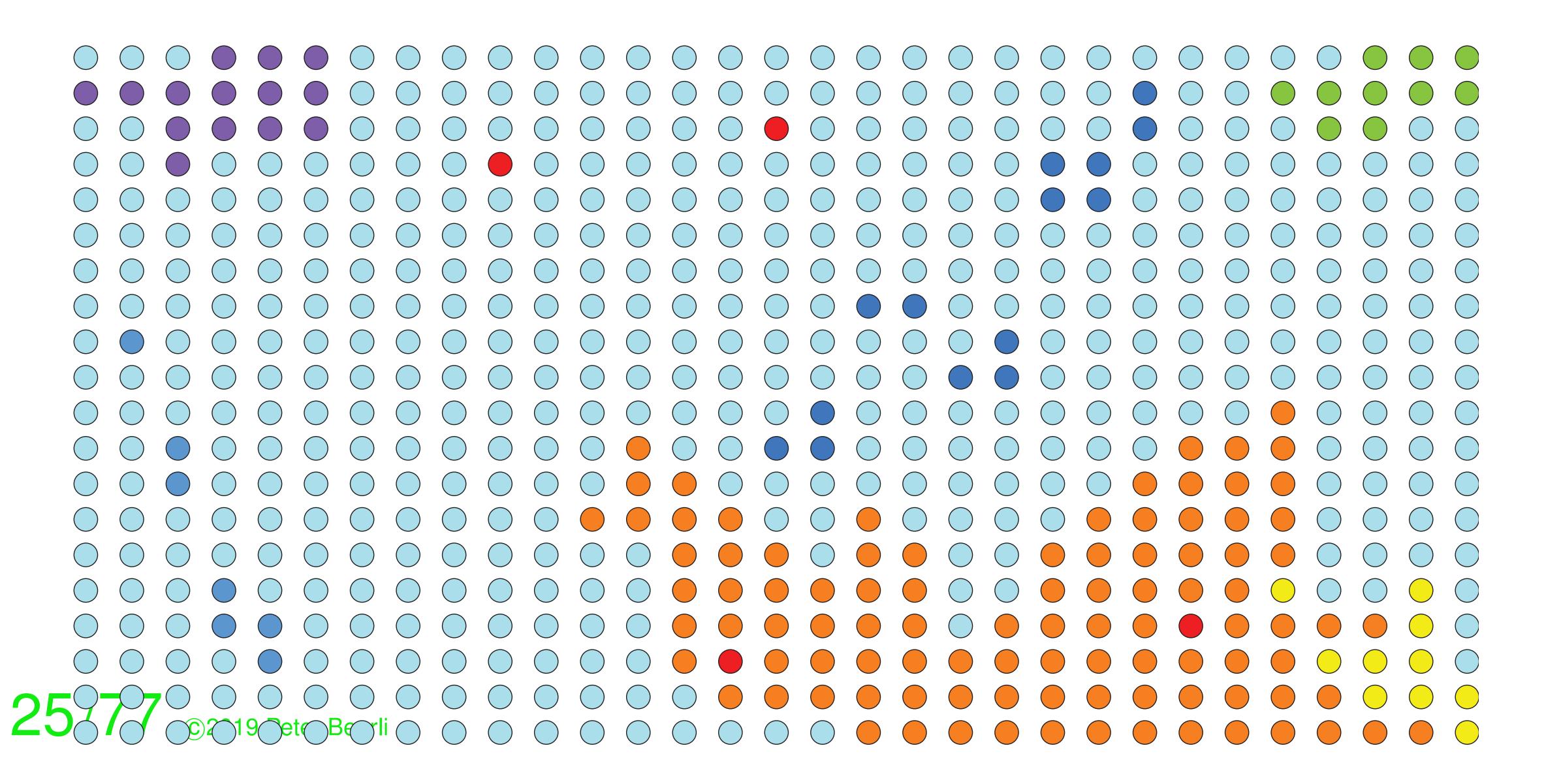


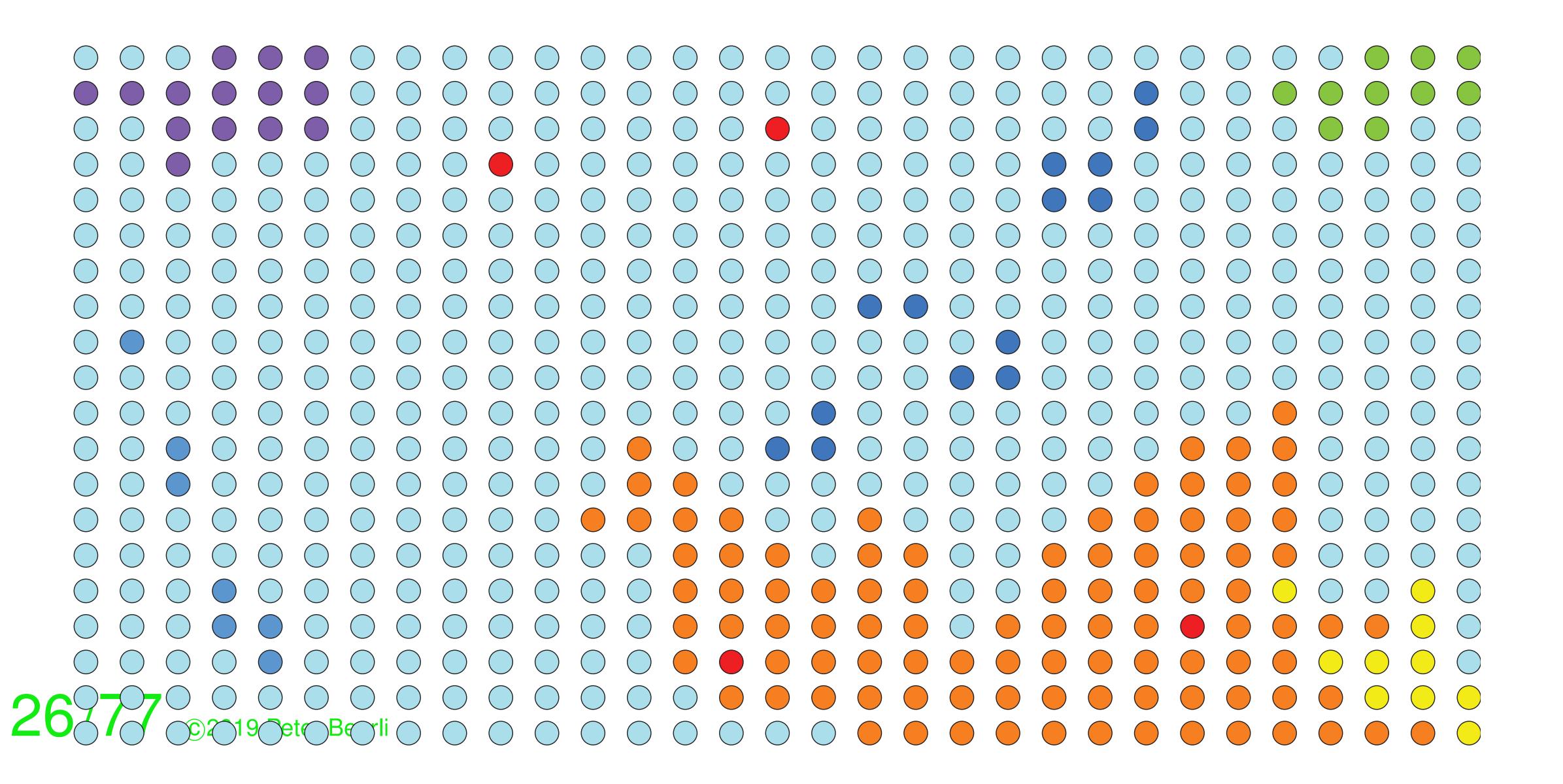


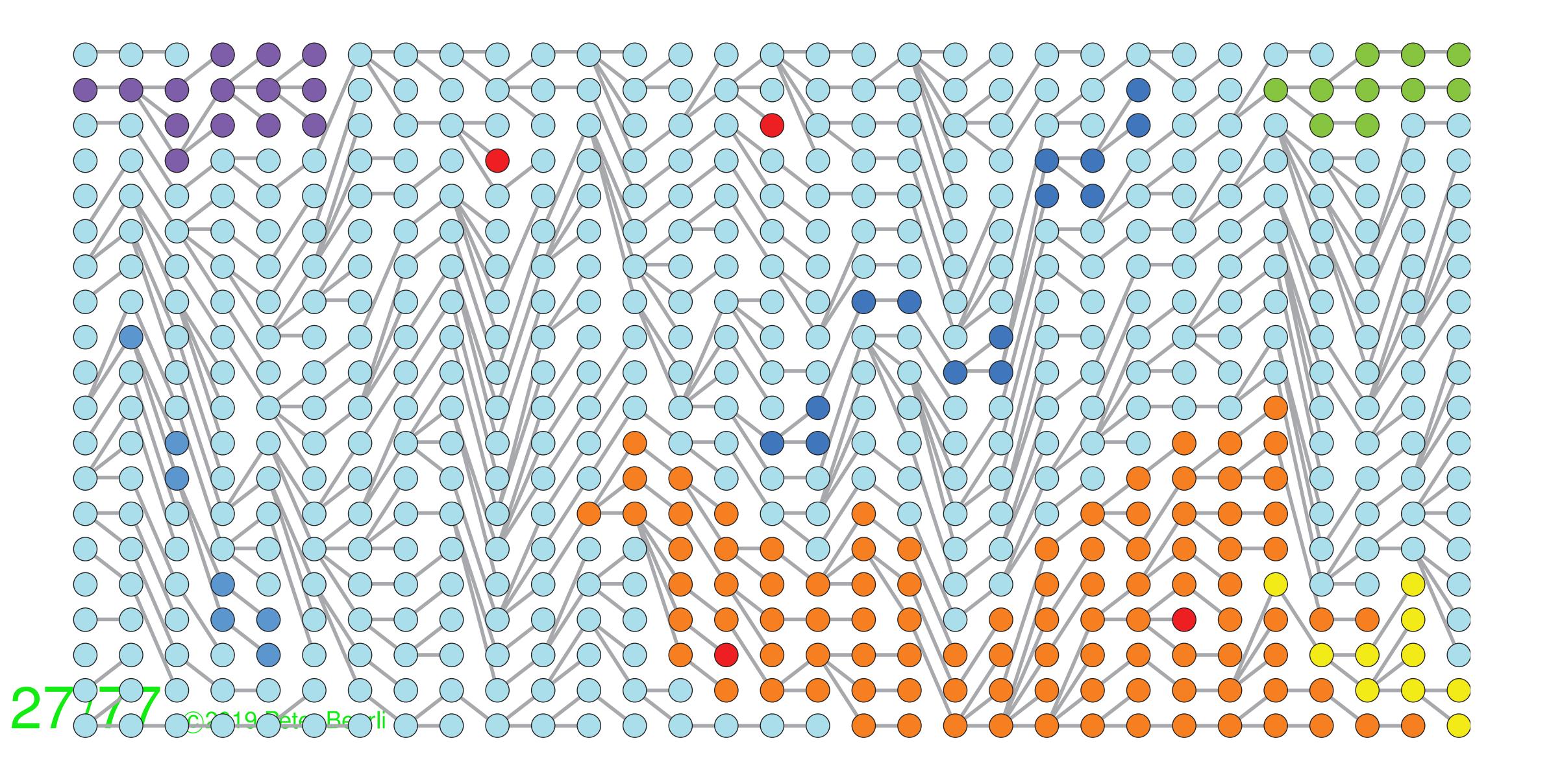


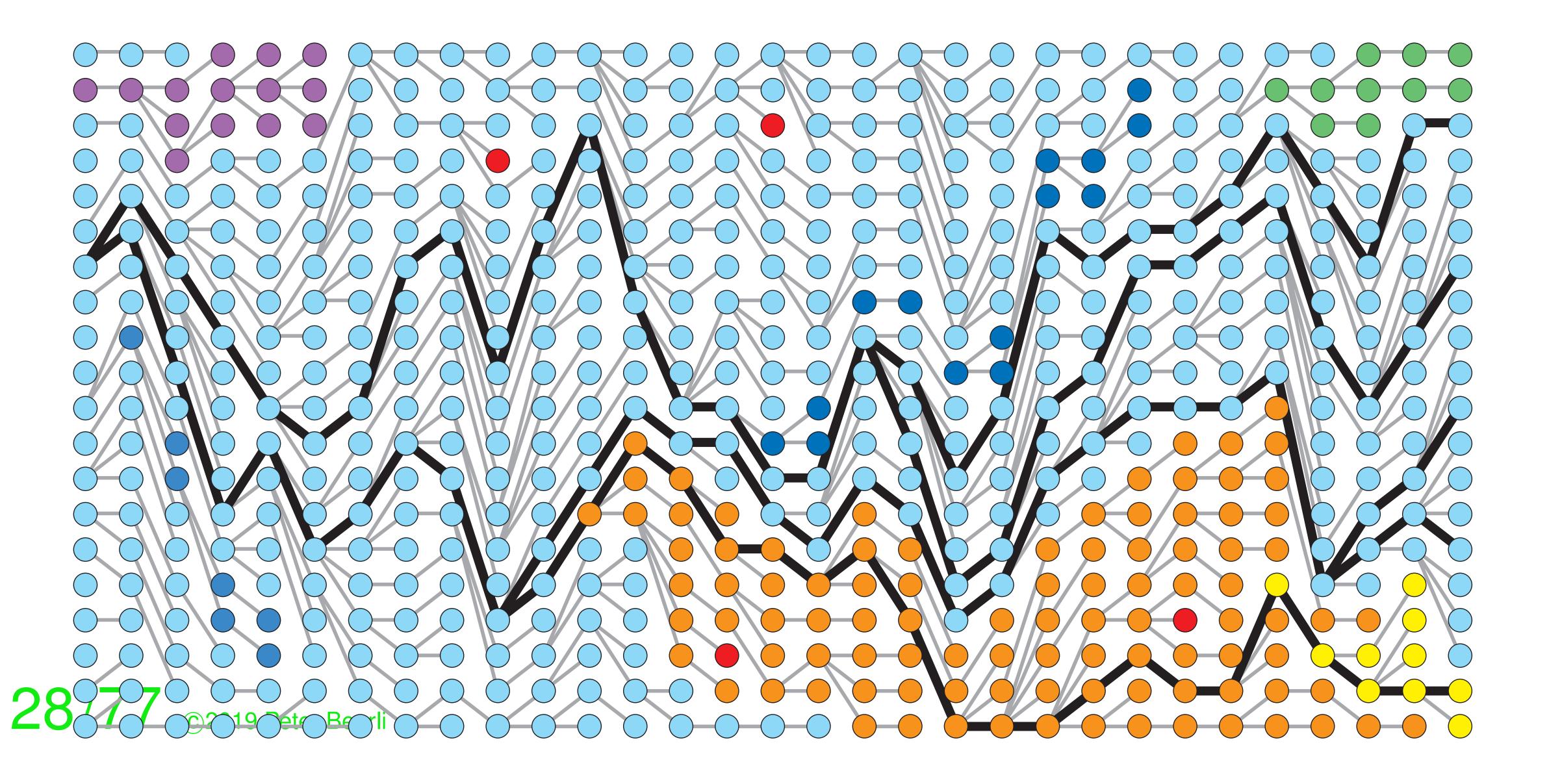


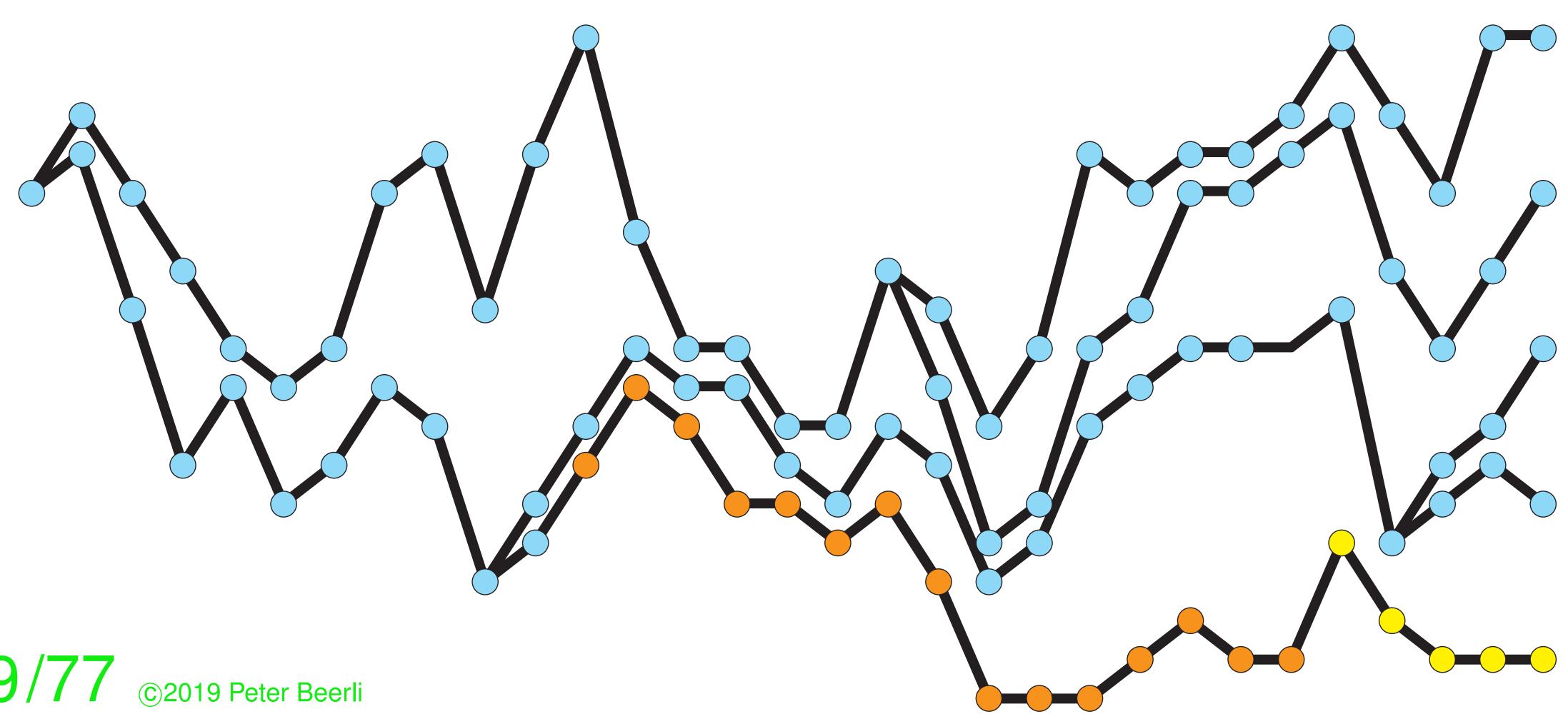


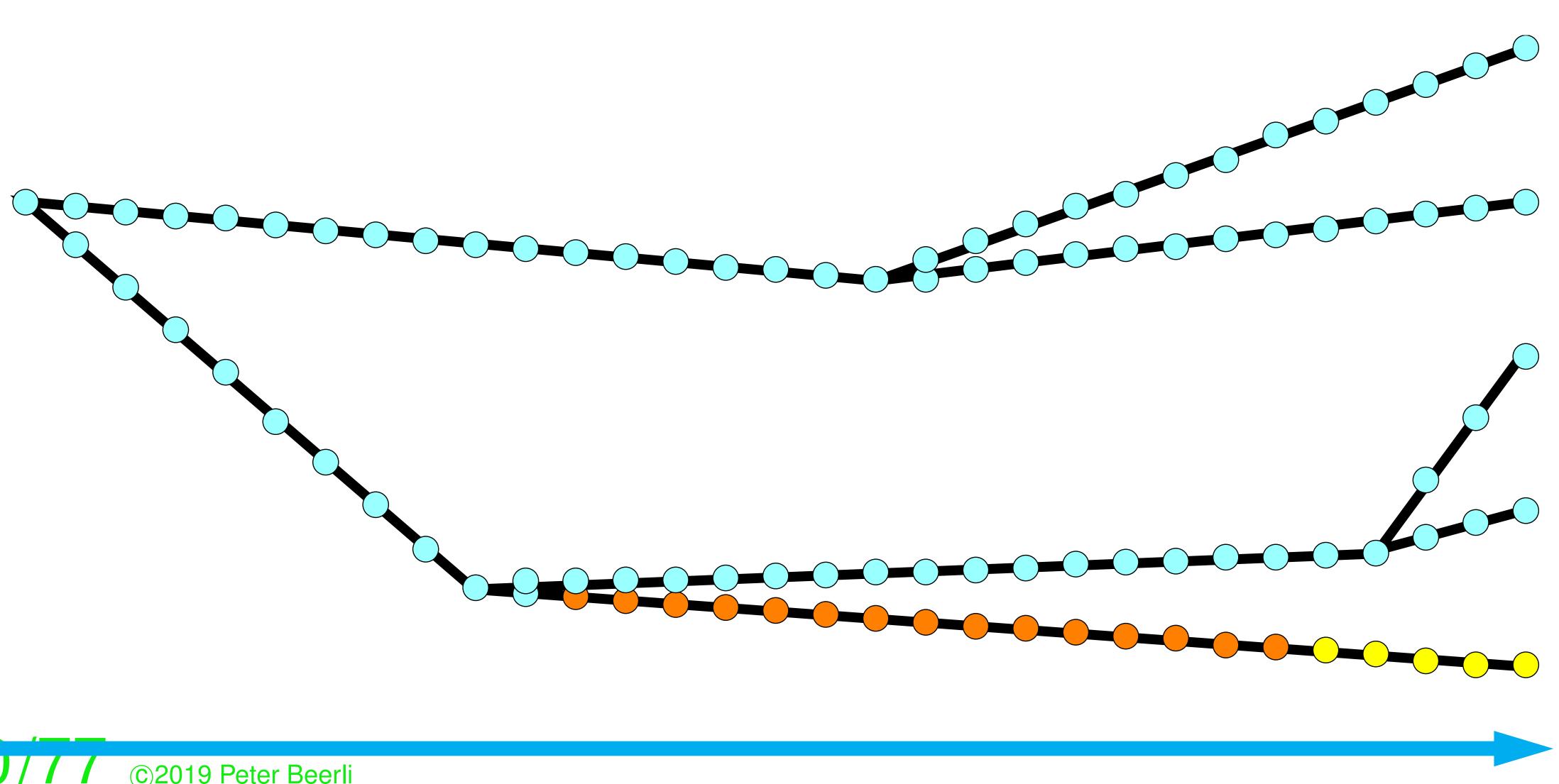


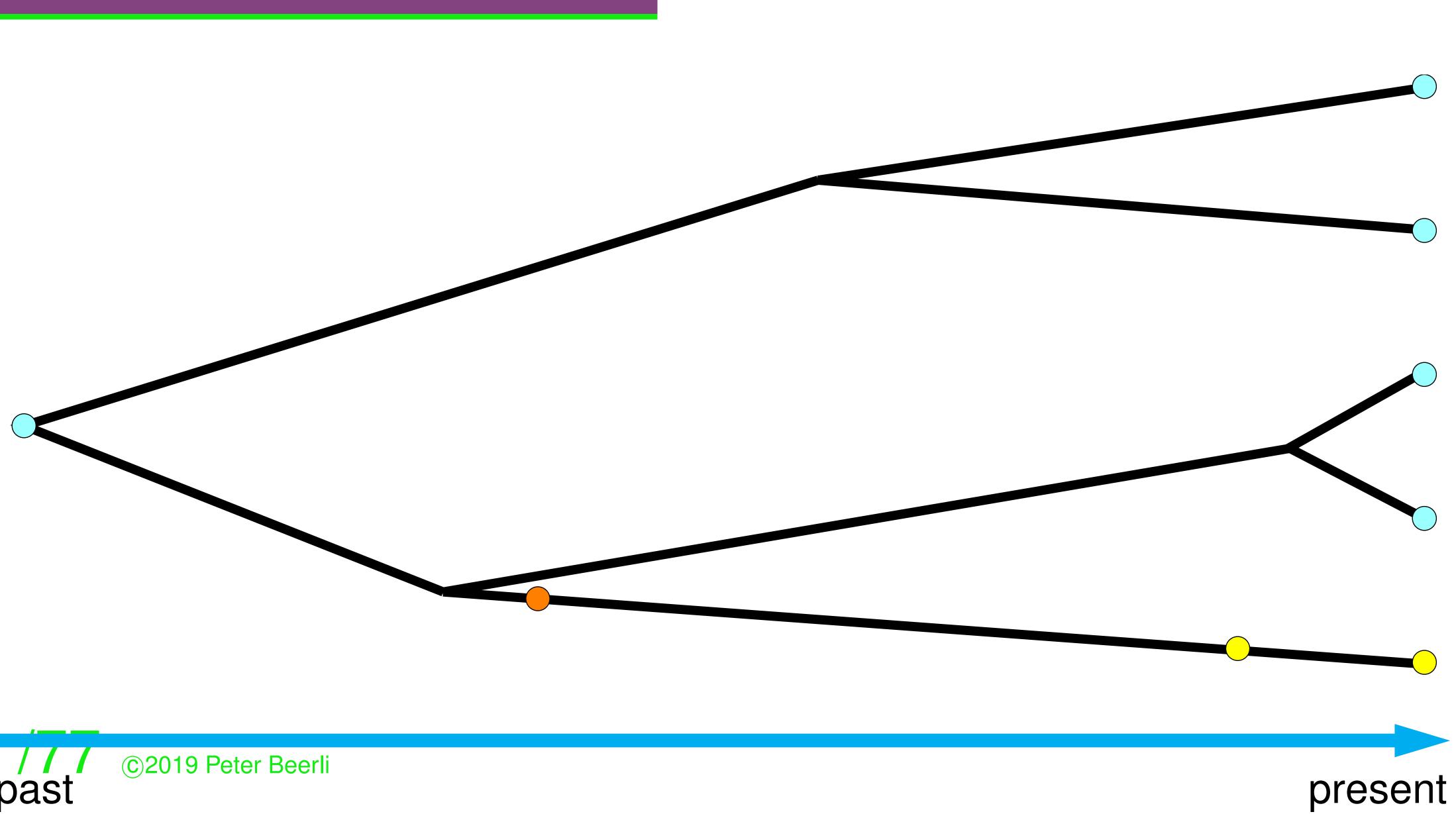


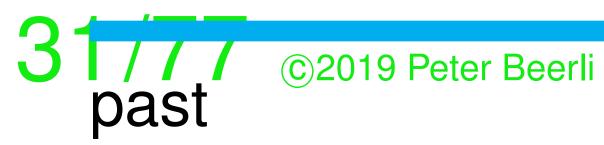






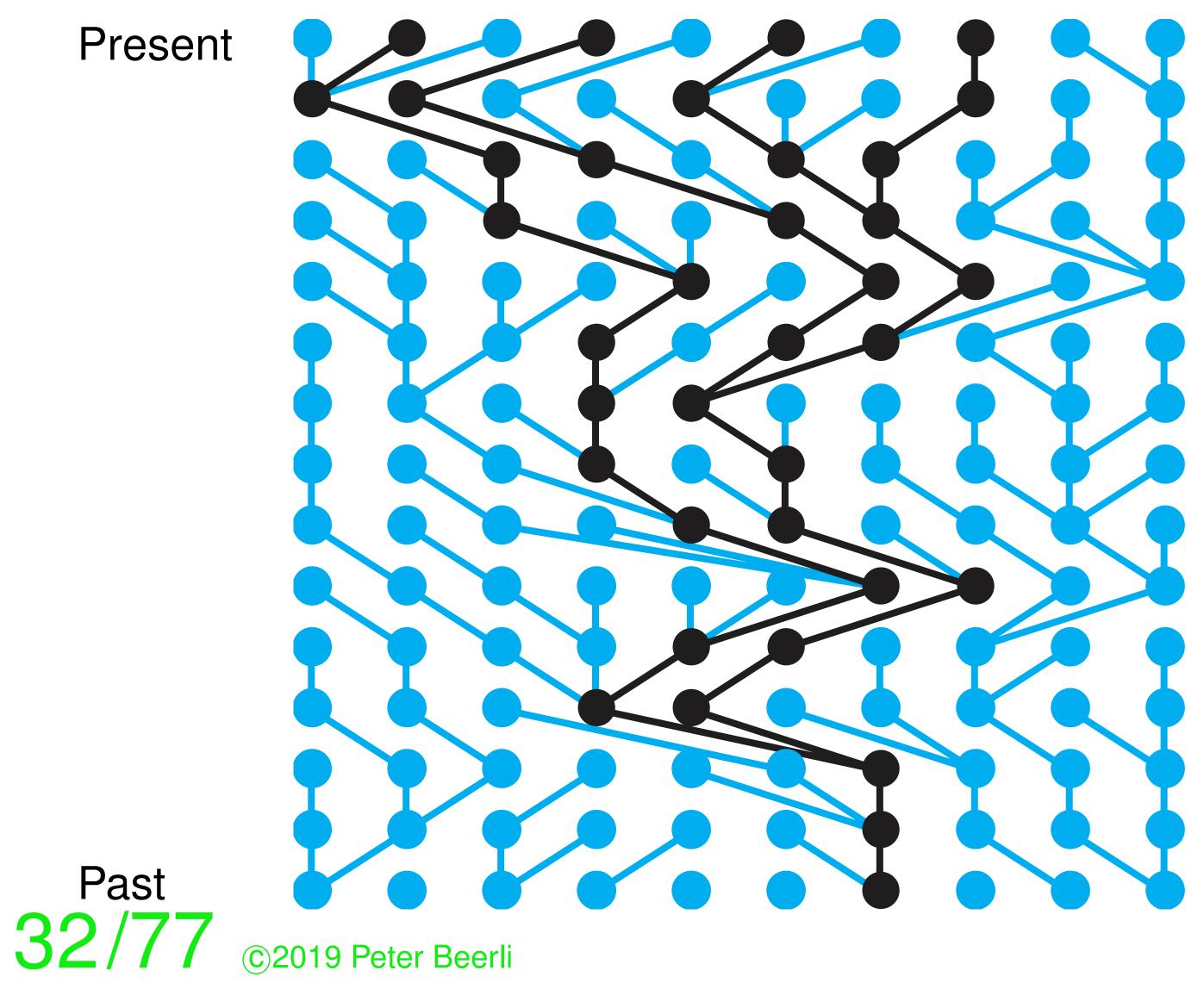






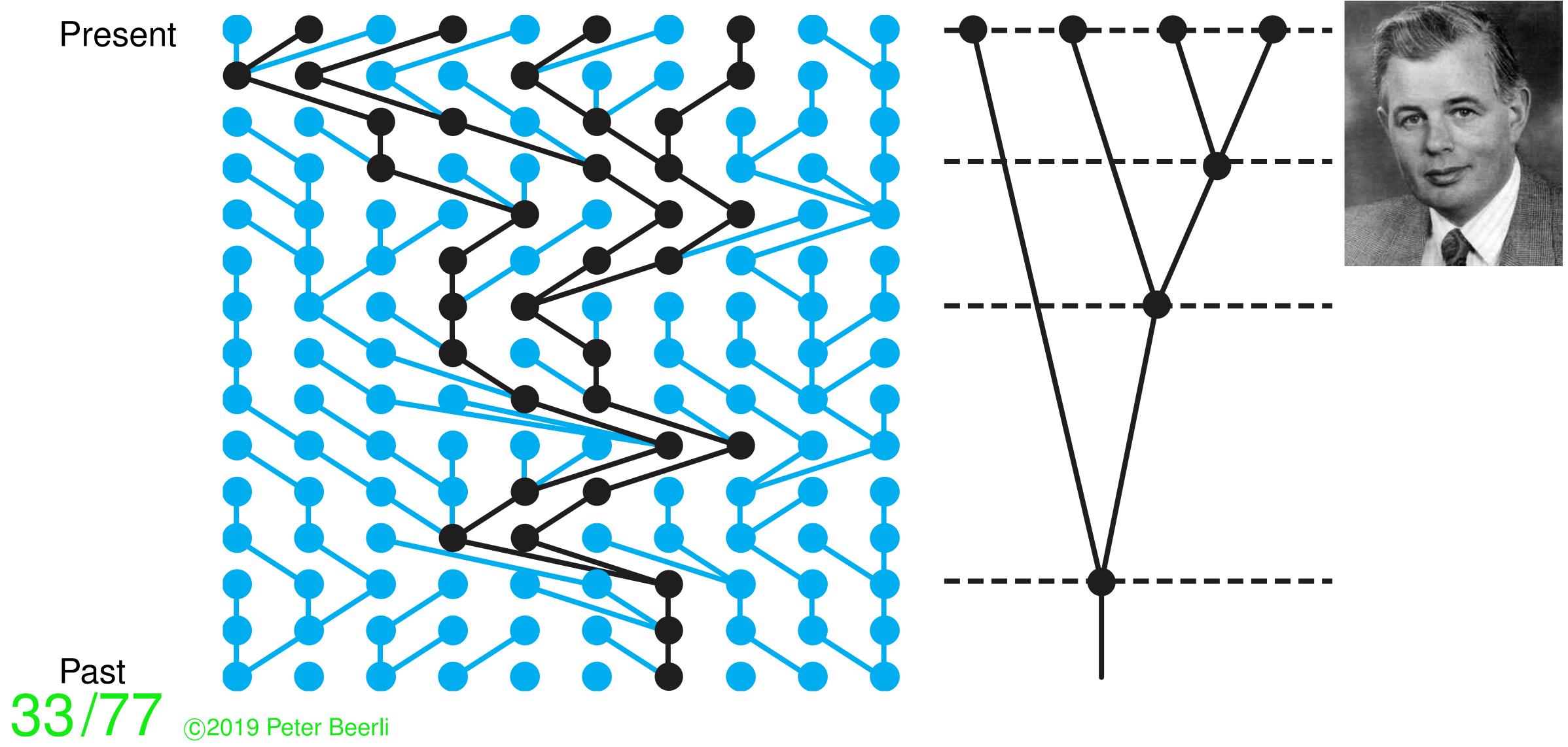
Coalescence theory

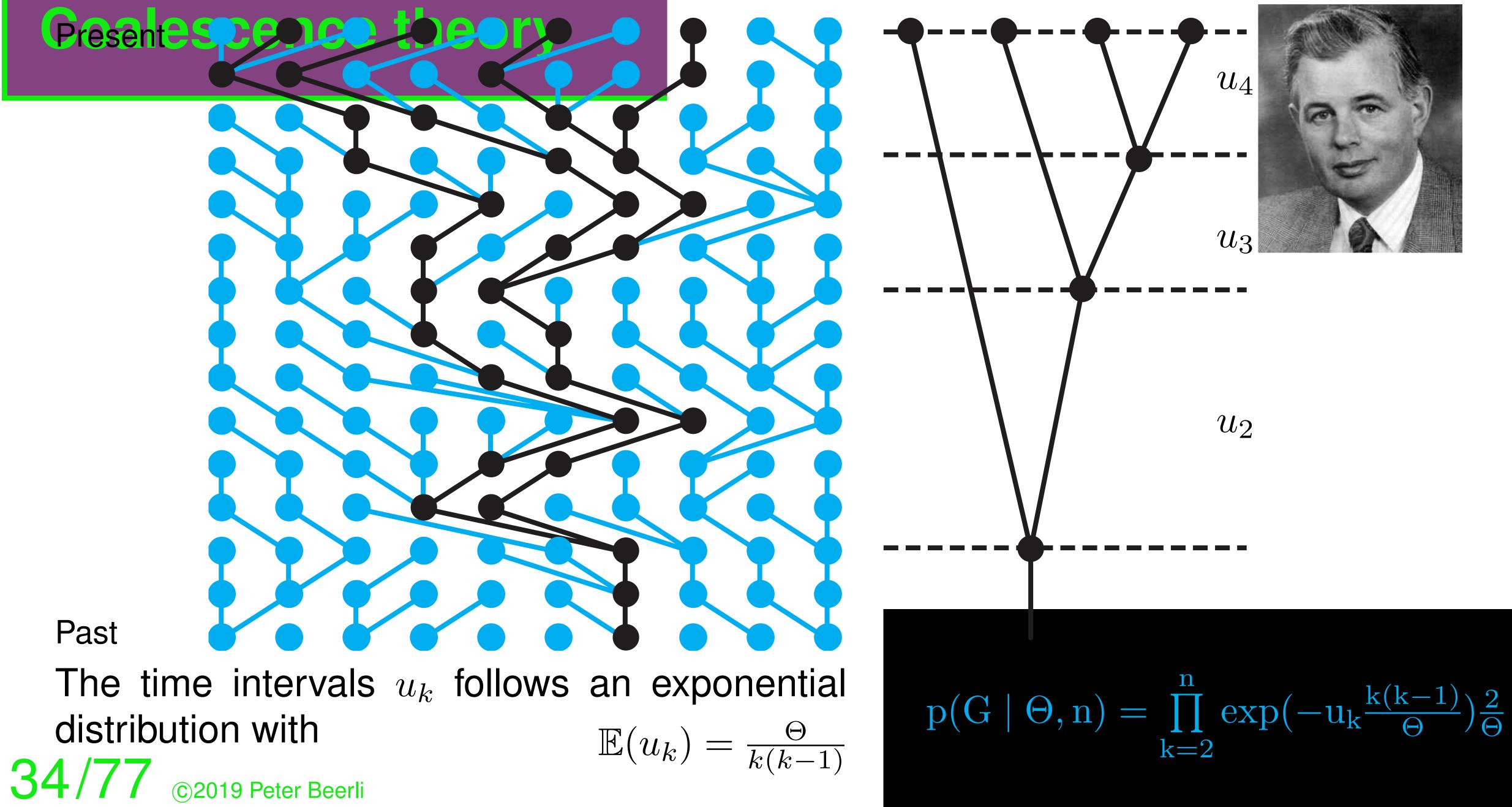
Present



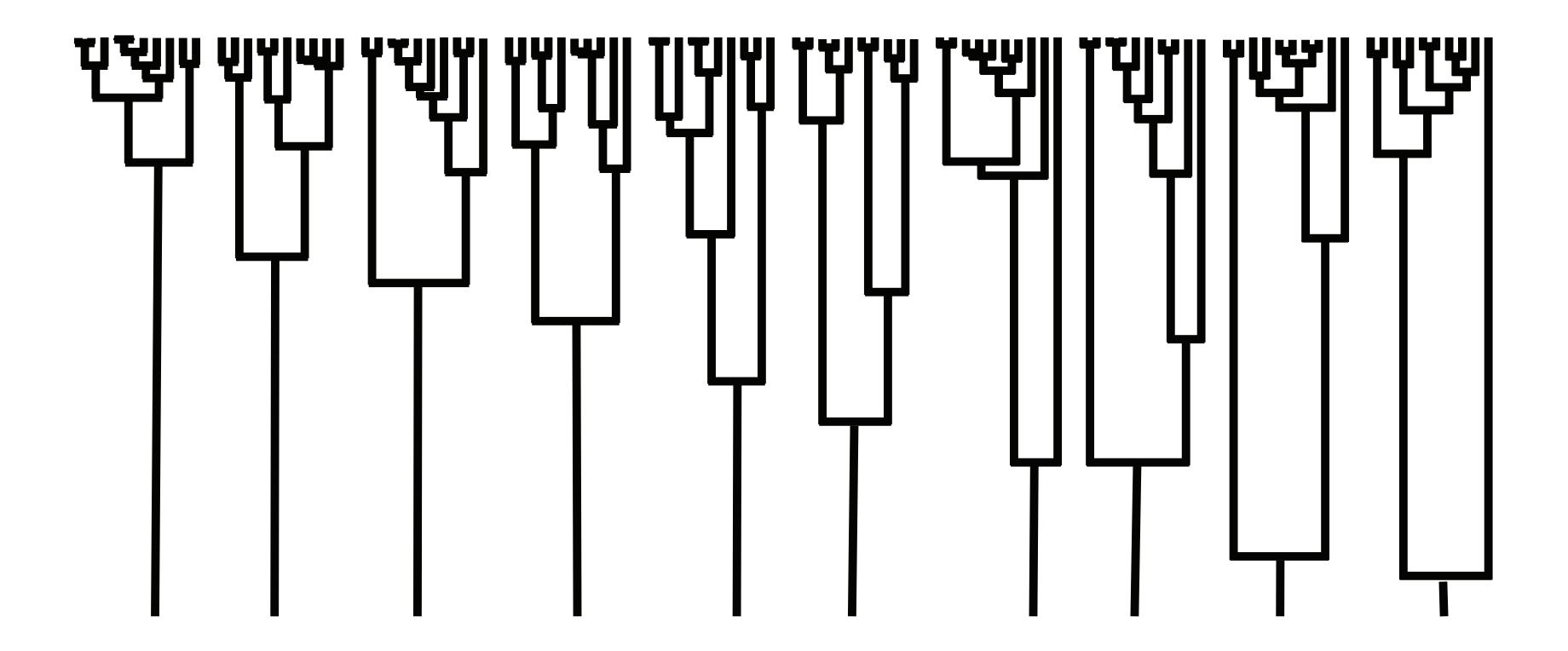
Coalescence theory

Present



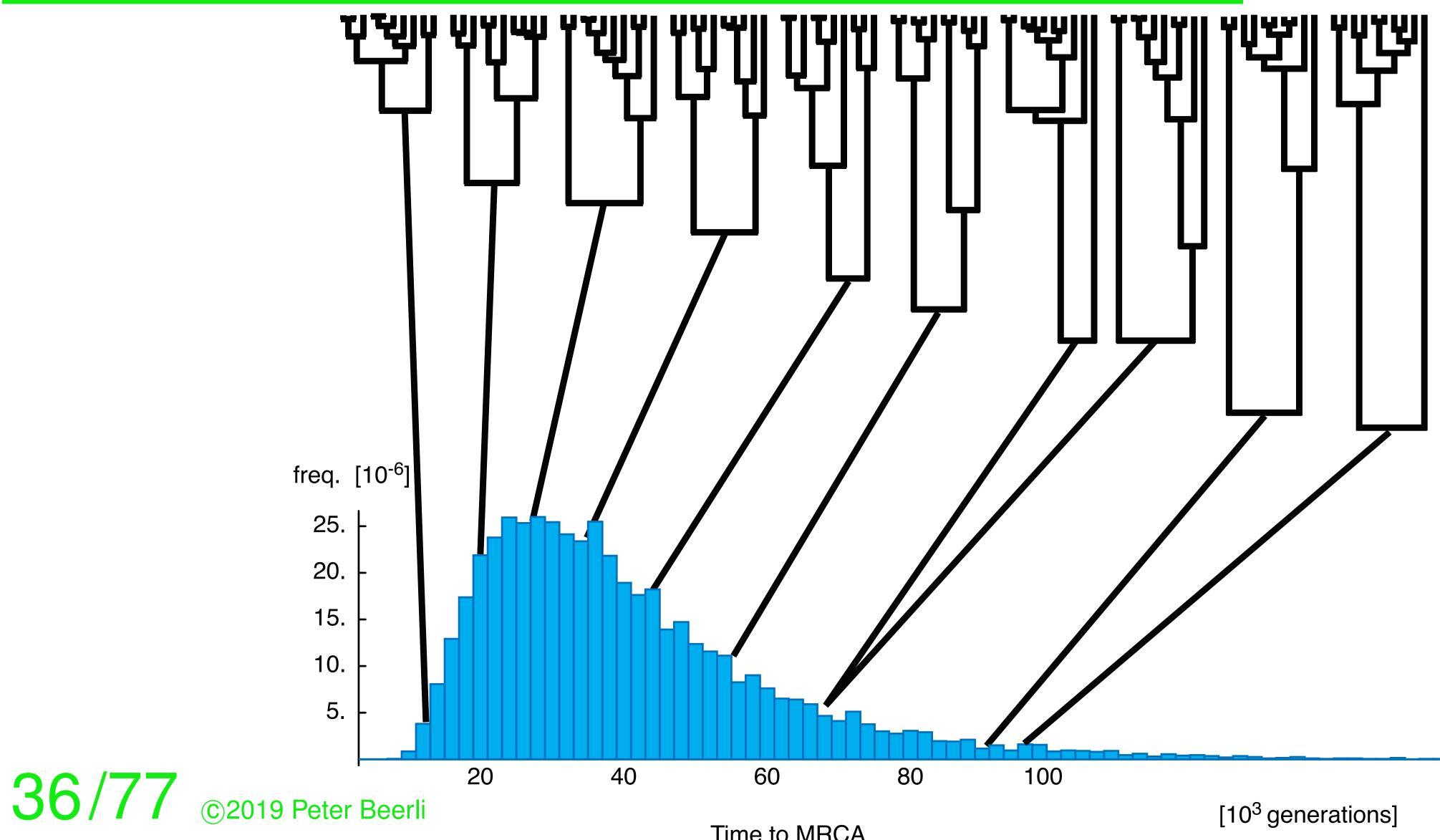


Variability of the coalescent process



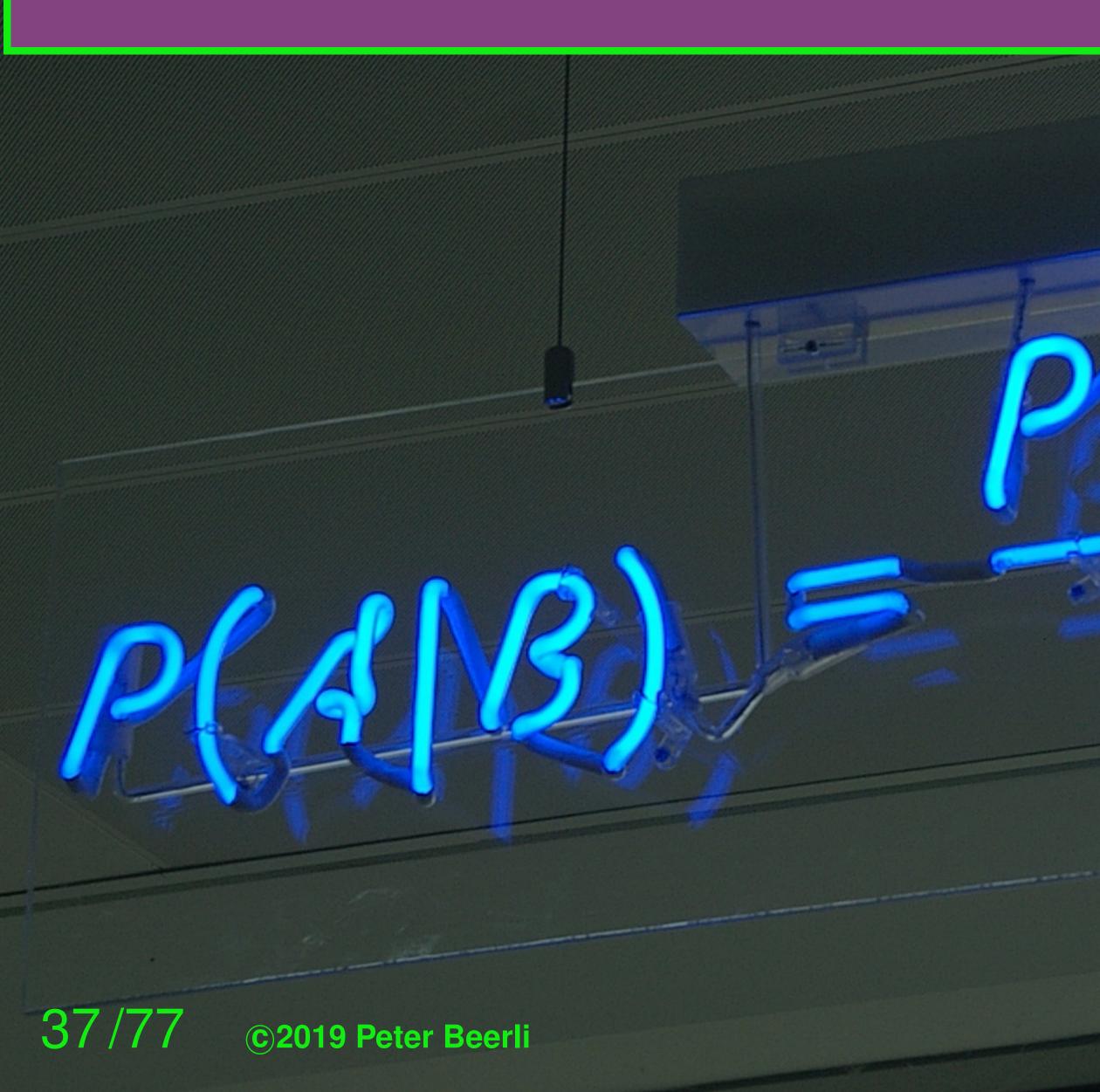
All genealogies were simulated with the same population size $N_e = 10,000$ Contract Contrat

Variability of the coalescent process

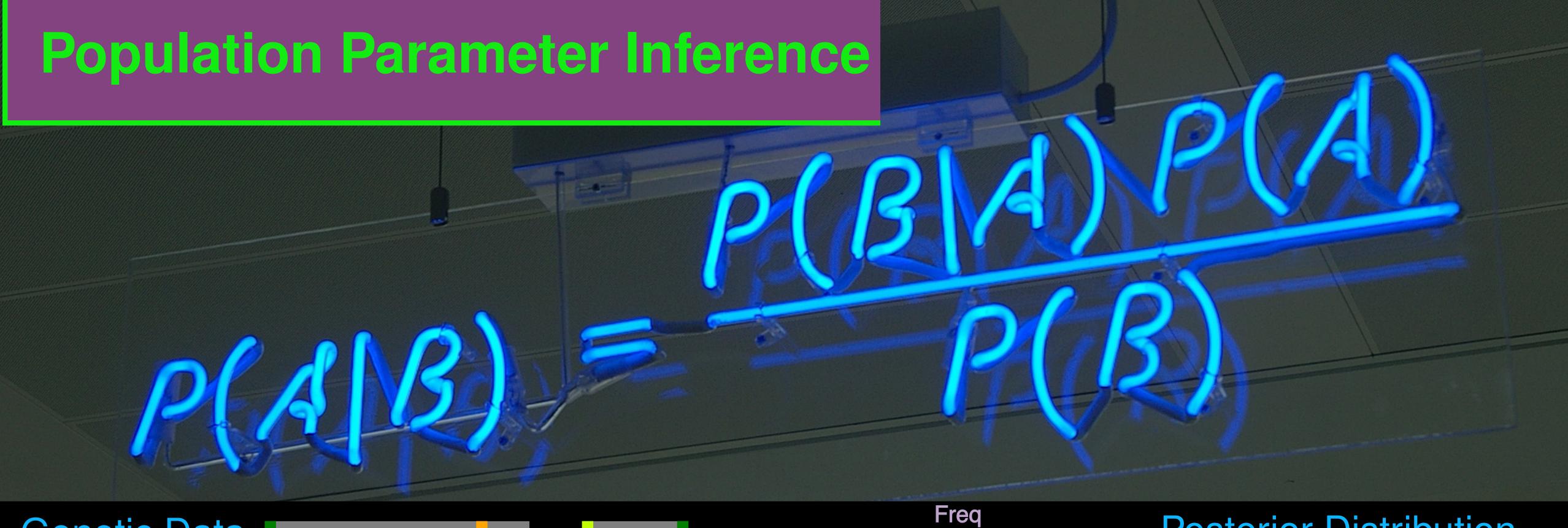


Time to MRCA

Population Parameter Inference



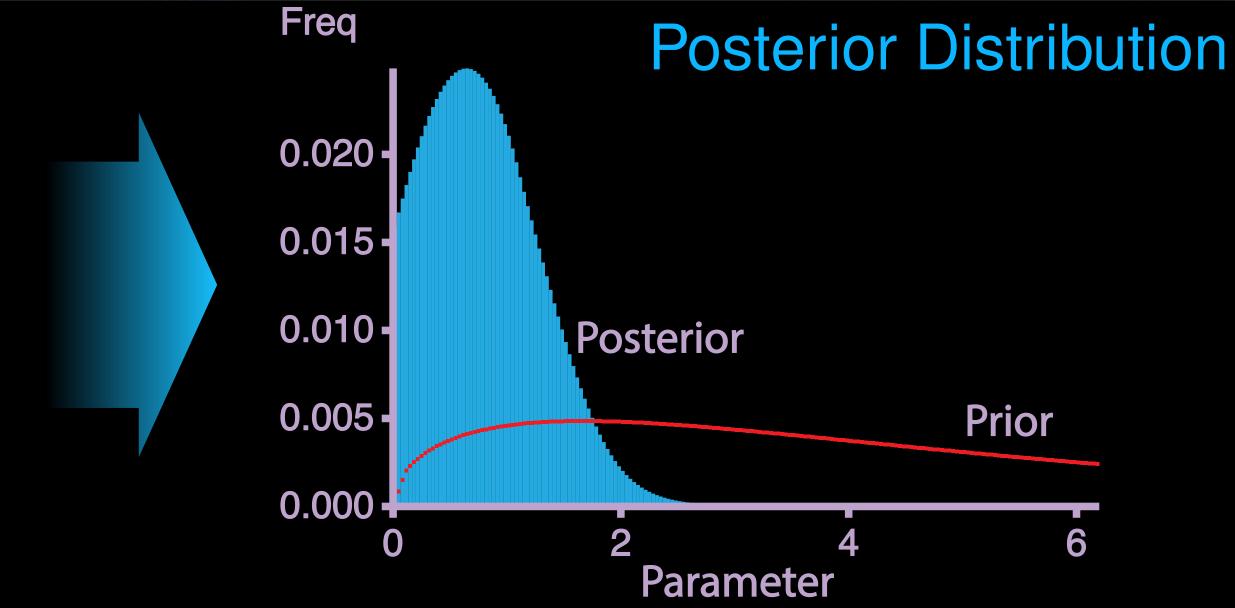
Wikimedia: Neon sign at Autonomy in Cambridge UK



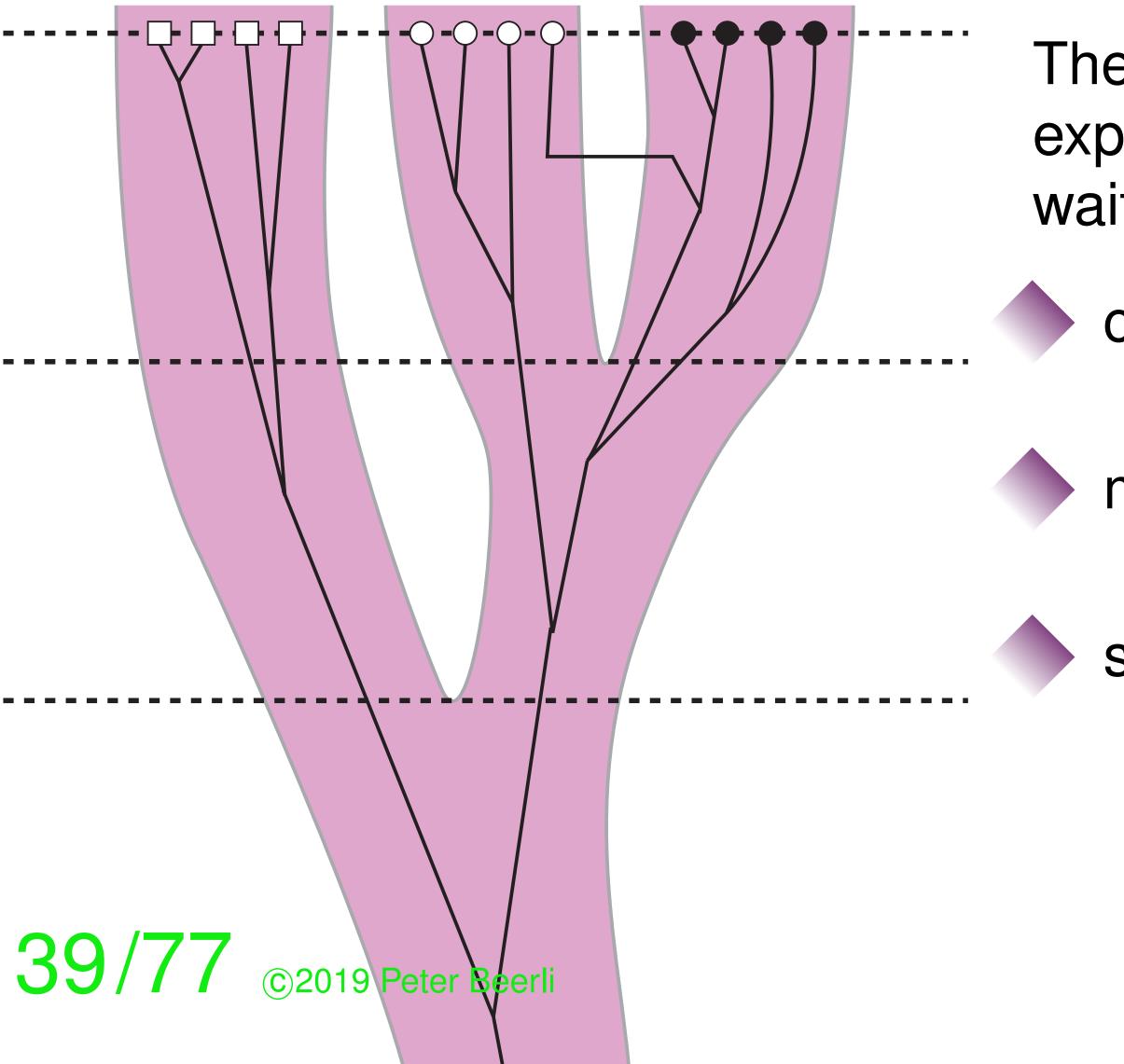
Genetic Data

Mutation model

Population model



Population model



The relationship among individuals can be expressed, looking backward in time, by a waiting process where random lineages

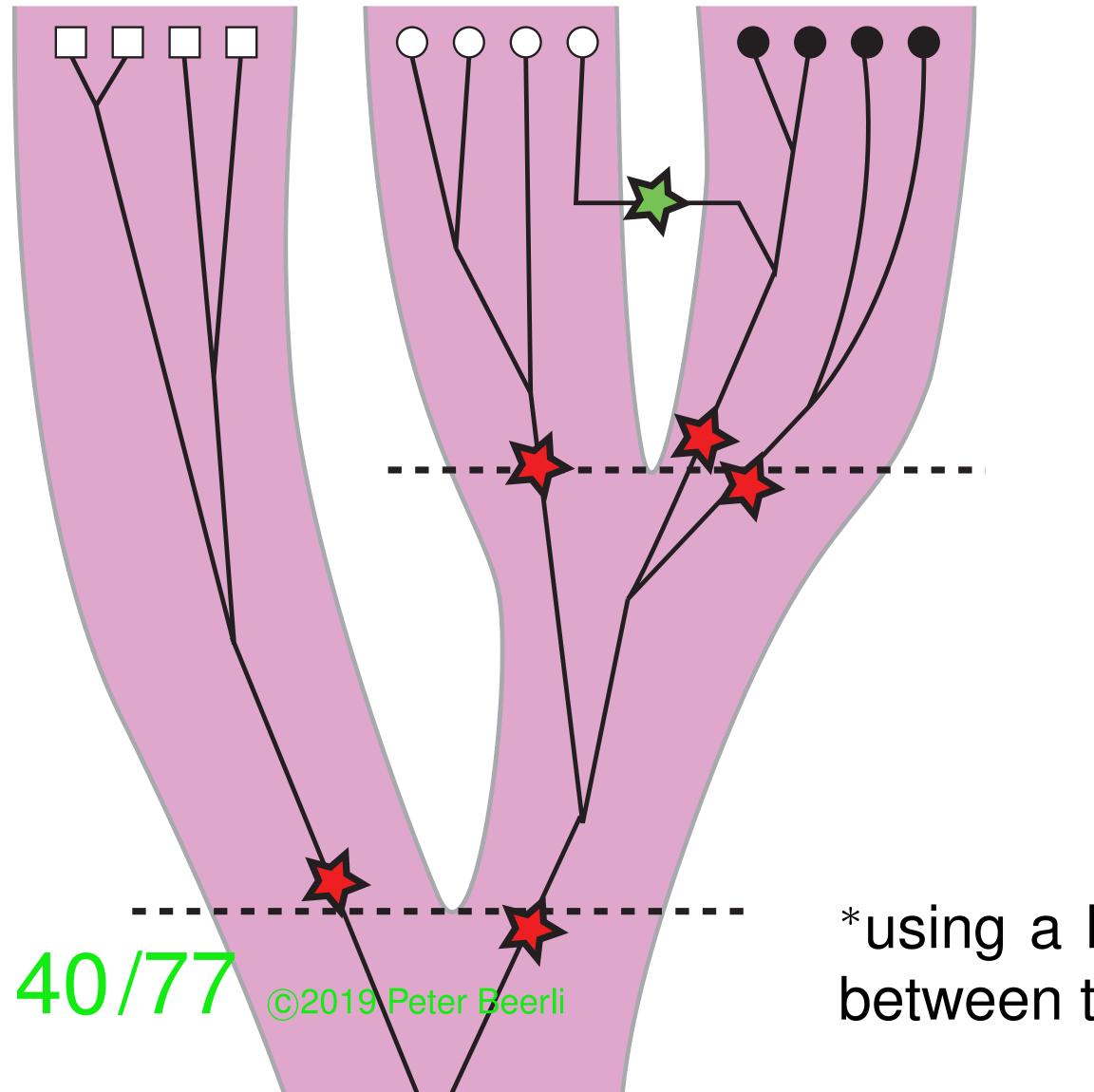
coalesce

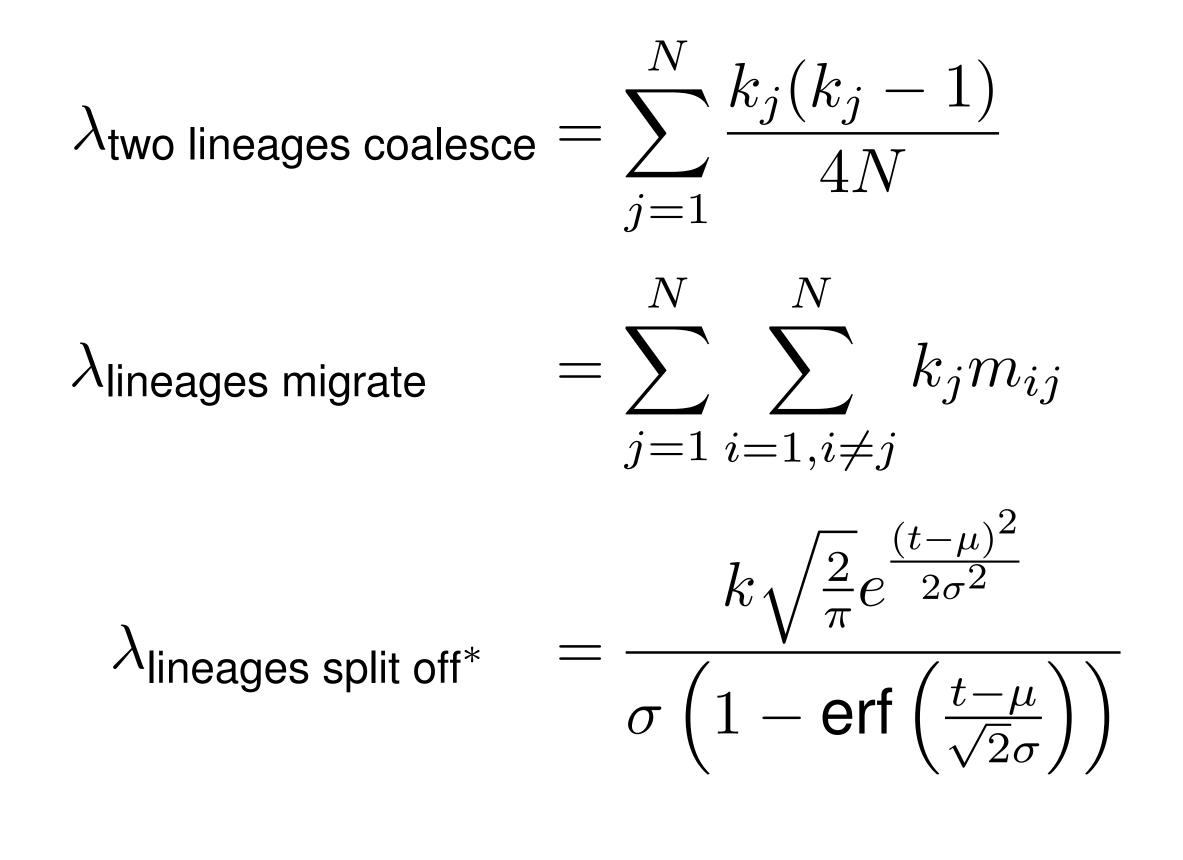
migrate between populations

split off an ancestral population

Population genetics

Each of these processes can be expressed as a waiting time process with rate λ for N populations and k_i lineages in population j:





*using a Normal distribution to model the splitting time between two populations.

Combining the parts

$$P(\boldsymbol{\Theta}|\mathbf{D}_1, \mathbf{D}_2, \dots, \mu) = \frac{P(\boldsymbol{\Theta})P(\mathbf{D}_1, \mathbf{D}_2, \dots|\boldsymbol{\Theta})}{P(\mathbf{D}_1, \mathbf{D}_2, \dots)}$$

$$P(G|\Theta) = \prod_{i=1}^{K} \lambda_x \exp(-t_i [\lambda_{\text{coale}}])$$

Θ μ G

 ${\mathcal X}$

4 ⁴/77

vector of parameters for population size, migration and splitting parameters. $D_1, D_2, ...$ independent genetic sequence data,

mutation model,

parameters not the trees). the particular event on the genealogy number of total events on the genealogy

$\frac{\Theta}{\int_{\Theta} P(\Theta) \int_{G} P(G|\Theta) \prod_{i}^{n_{\text{Loci}}} P(\mathbf{D}_{i}|G,\mu) dG}{\int_{\Theta} P(\Theta) \int_{G} P(G|\Theta) \prod_{i}^{n_{\text{Loci}}} P(\mathbf{D}_{i}|G,\mu) dG d\Theta}$

escence $+ \lambda_{\text{migration}} + \lambda_{\text{splitting}}$

nuisance genealogies that we integrate out (we are interested in the

Finally....

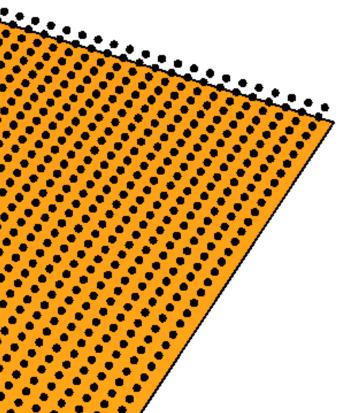
42/77 ©2019 Peter Beerli

$p(D|\Theta) = \int_{C} p(G|\Theta)p(D|G)dG$

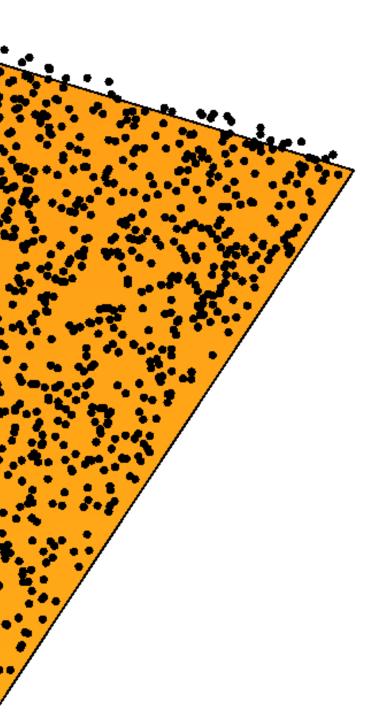
The number of possible genealogies is very large and for realistic data sets, programs need to use Markov chain Monte Carlo methods.

Naive integration approach

Naive integration approach

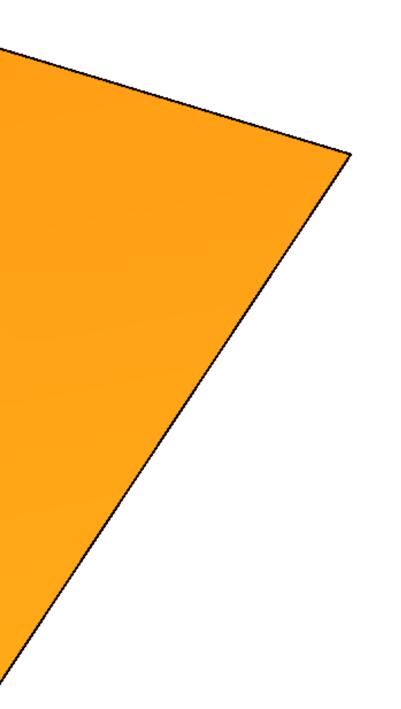


Another naive integration approach

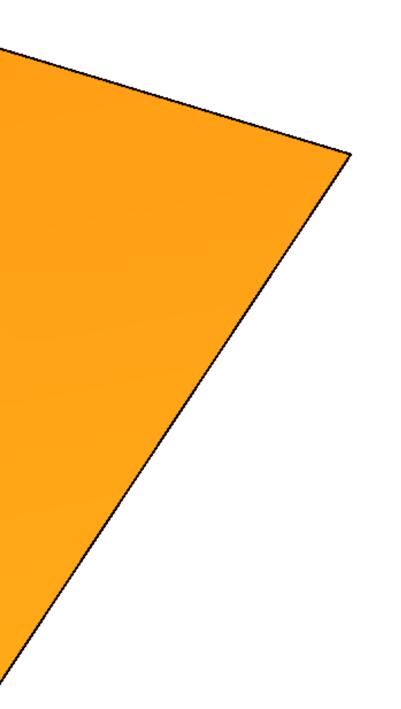


46/77 © 2019 Peter Beerli



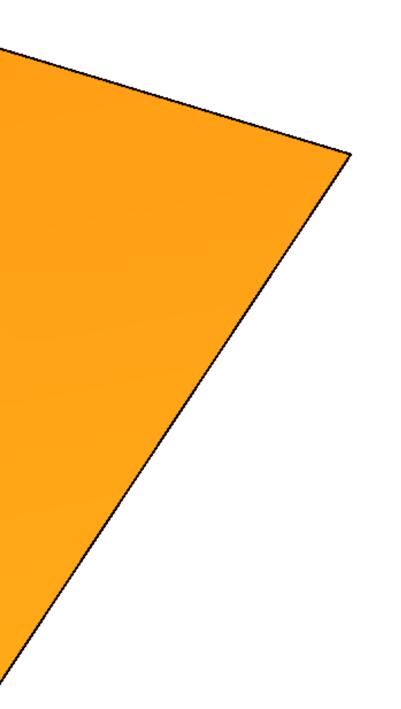






48/77 © 2019 Peter Beerli



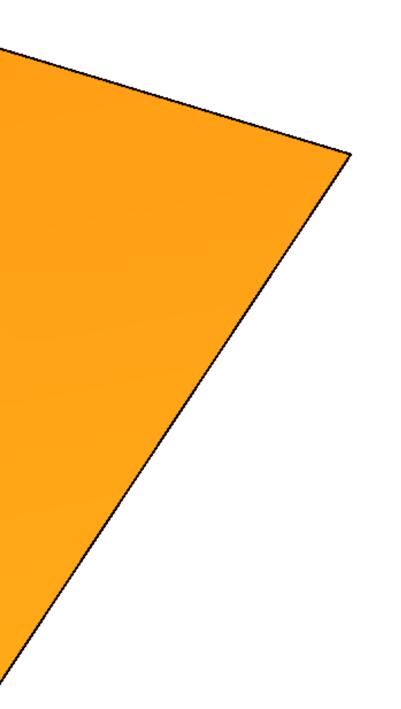


.....

3.

49/77 © 2019 Peter Beerli

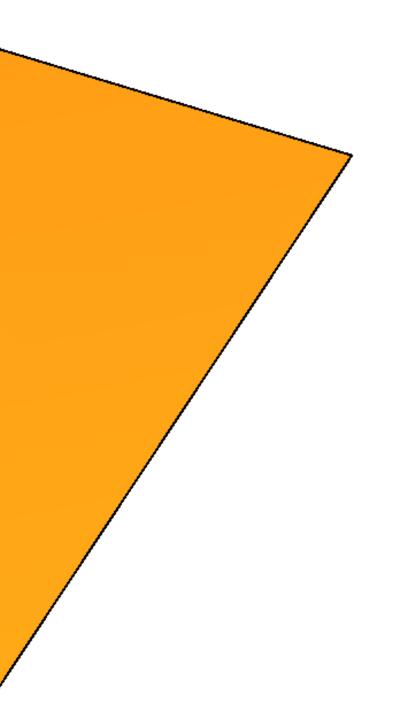




3.

50/77 © 2019 Peter Beerli

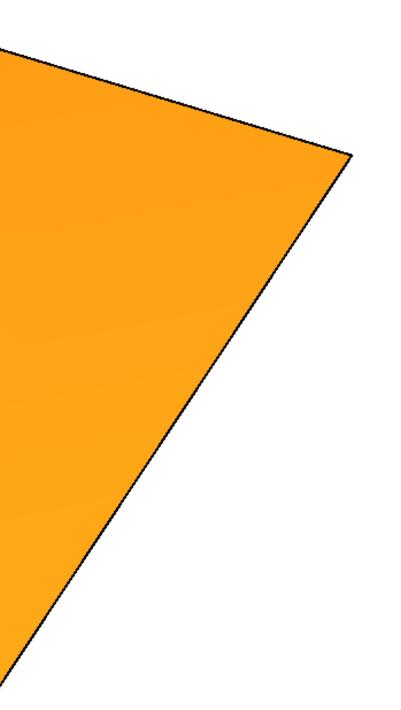




3

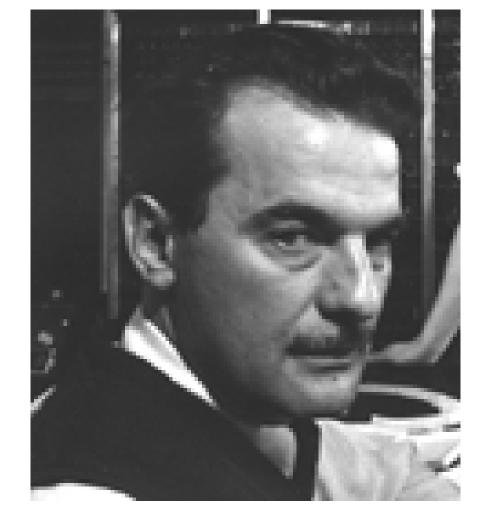
51/77 © 2019 Peter Beerli

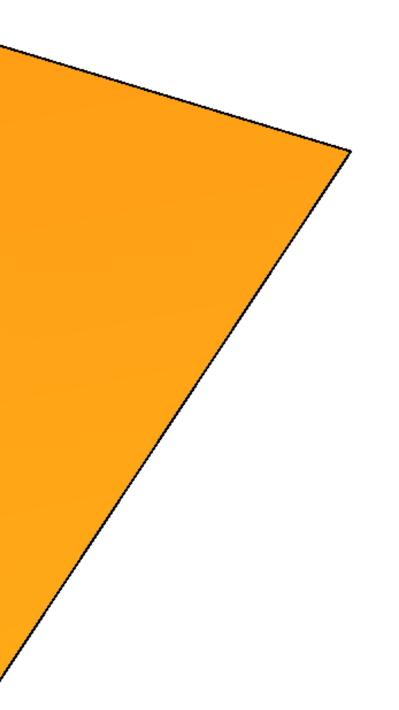




20

52/77 © 2019 Peter Beerli





3.

So many models – so little time

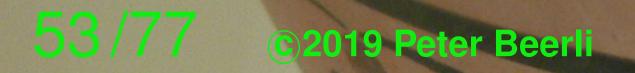


Photo CC Wikimedia Wolfgang Sauber

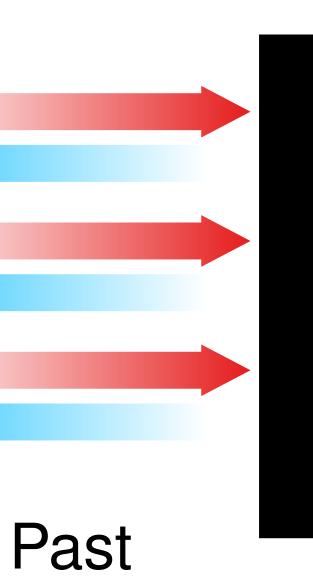
Gene flow

Neanderthal

-30,000 years

54/77 ©2019 Peter Beerli

'Modern' human



Present

Data: Lego pictures from the net

Divergence and Gene flow

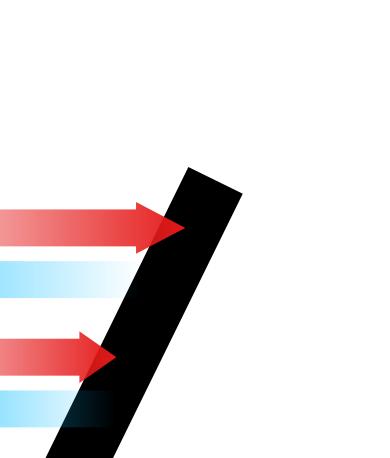
-30,000 years

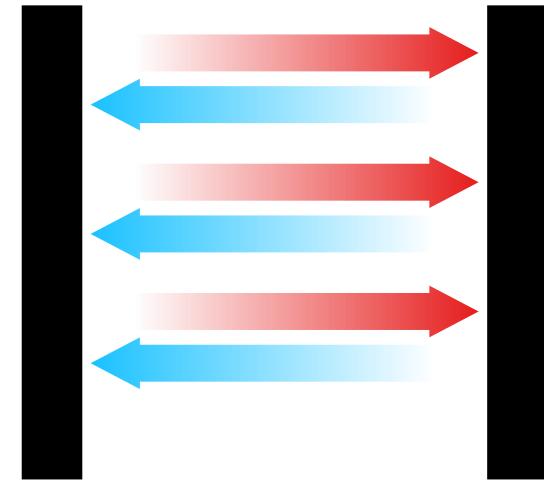
Present

Past

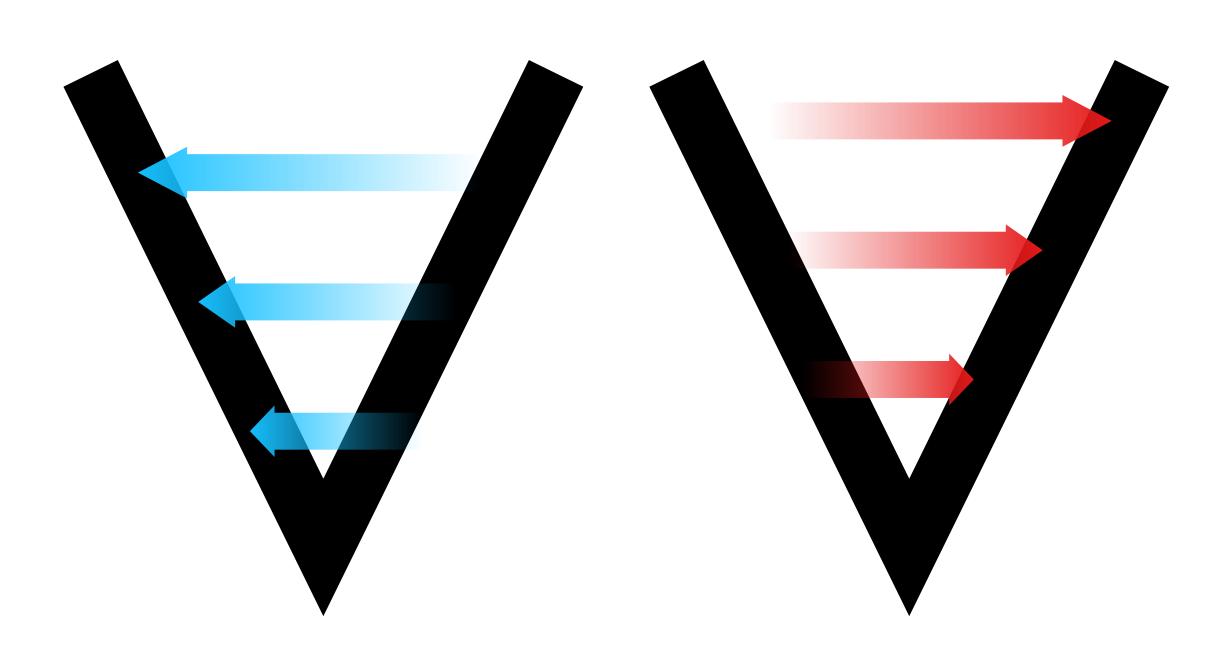
'Modern' human

Different structural models





More different structural models

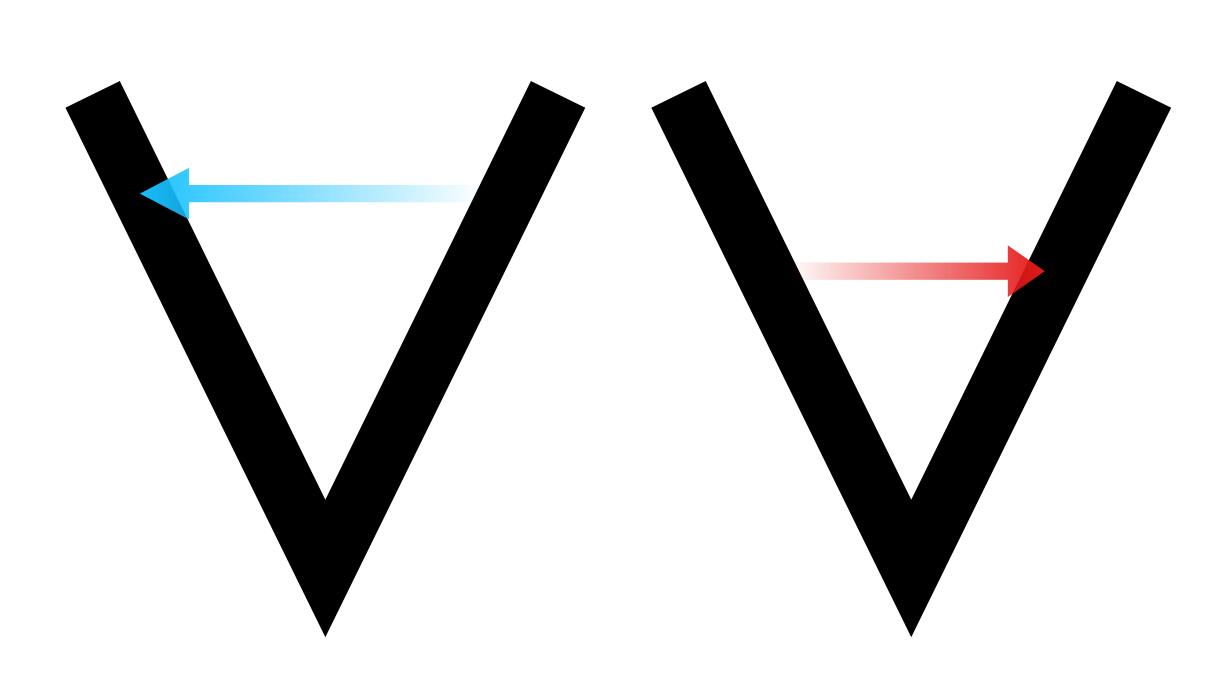


57/77 ©2019 Peter Beerli



Summary

Even more different structural models



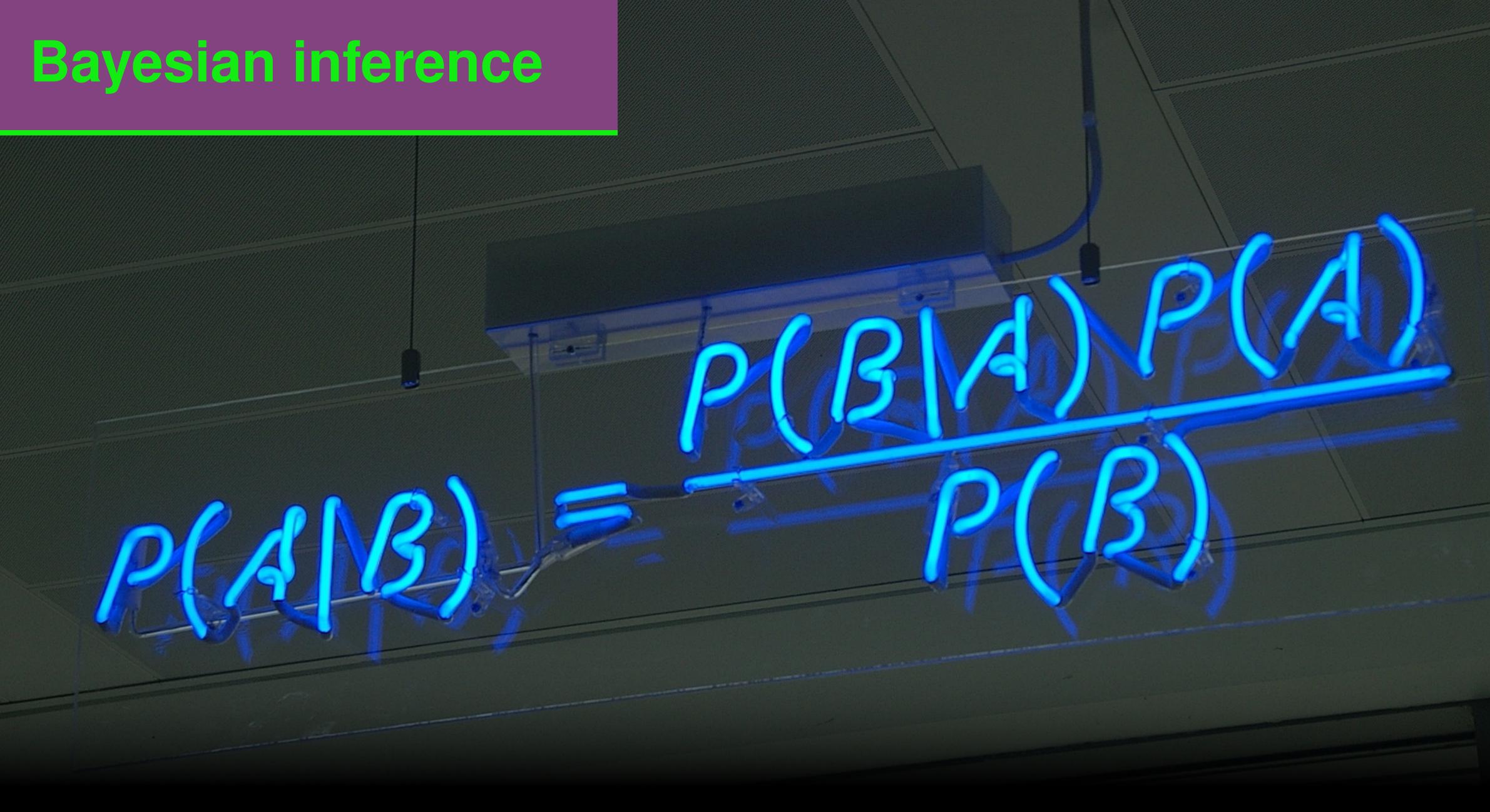
58/77 © 2019 Peter Beerli

Summary

Model comparison

With a criterium such as likelihood we can compare nested models. Commonly we use a likelihood ratio test (LRT) or Akaike's information criterion (AIC) to establish whether phylogenetic trees are statistically different or mutation models have an effect on the outcome, etc.

Kass and Raftery (1995) popularized the Bayes Factor as a Bayesian alternative to the LRT.

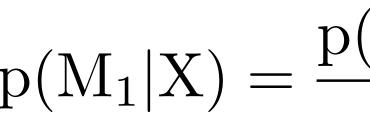


Bayes factor

Theoretically, we can calculate the posterior probability density of the model $p(M_1|X) = \frac{p(M_1)p(X|M_1)}{p(X)}$

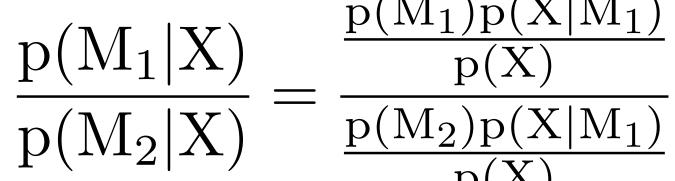
Bayes factor

Theoretically, we can calculate the posterior probability density of the model 1 and model 2



 $p(M_1|X) = \frac{p(M_1)p(X|M_1)}{p(X)}$ $p(M_2|X) = \frac{p(M_2)p(X|M_1)}{p(X)}$

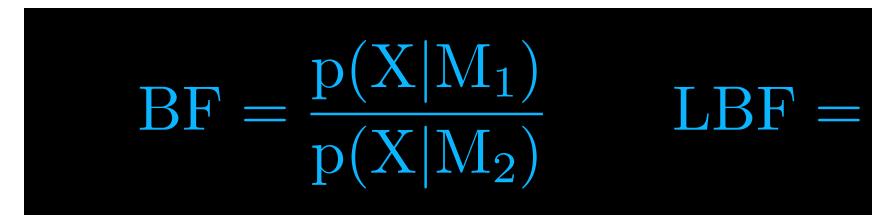
Theoretically, we can calculate the posterior probability density of the model 1 and model 2



 $\underline{p(M_1)p(X|M_1)}$ p(X)

Bayes factor

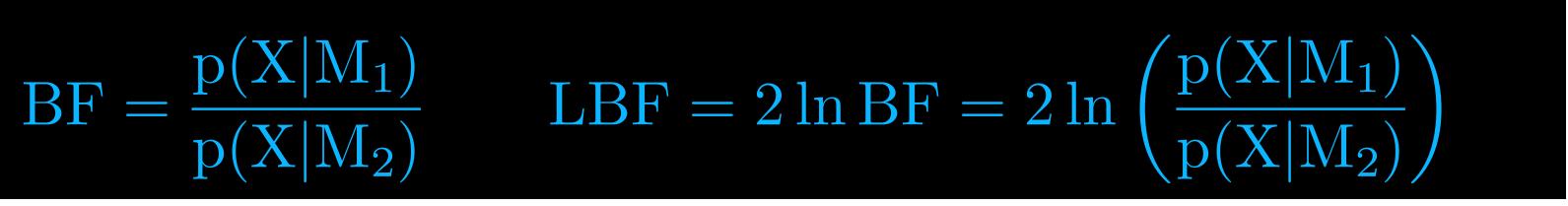
We could look at the posterior odds ratio or equivalently the Bayes factors. $\frac{p(M_1|X)}{p(M_2|X)} = \frac{p(M_1)}{p(M_2)} \times \frac{p(X|M_1)}{p(X|M_2)}$



$$2\ln BF = 2\ln \left(\frac{p(X|M_1)}{p(X|M_2)}\right)$$

Bayes factor

The magnitude of BF gives us evidence against or for hypothesis M_2

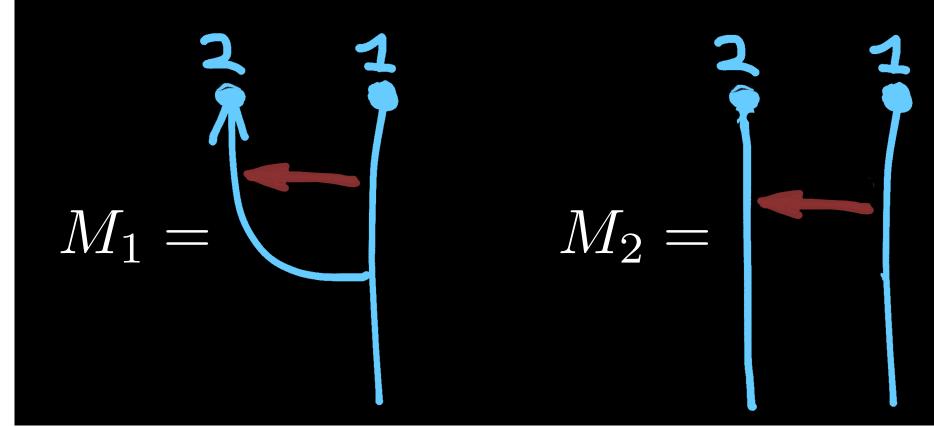


- $LBF = 2 \ln BF = z \qquad \begin{cases} 0 < |z| < 2 & \text{No real difference} \\ 2 < |z| < 6 & \text{Positive} \\ 6 < |z| < 10 & \text{Strong} \\ |z| > 10 & \text{Very strong} \end{cases}$

Bayes factor example

LBF = $2\ln BF = 2\ln \left(\frac{p(X|M_1)}{p(X|M_2)}\right) = 2(-9638.69) - (-9641.01) = 4.64$

The magnitude of BF gives us evidence against or for hypothesis M_2



- $LBF = 2\ln BF = z \qquad \begin{cases} 0 < |z| < 2 & \text{No real difference} \\ 2 < |z| < 6 & \text{Positive} \\ 6 < |z| < 10 & \text{Strong} \end{cases}$

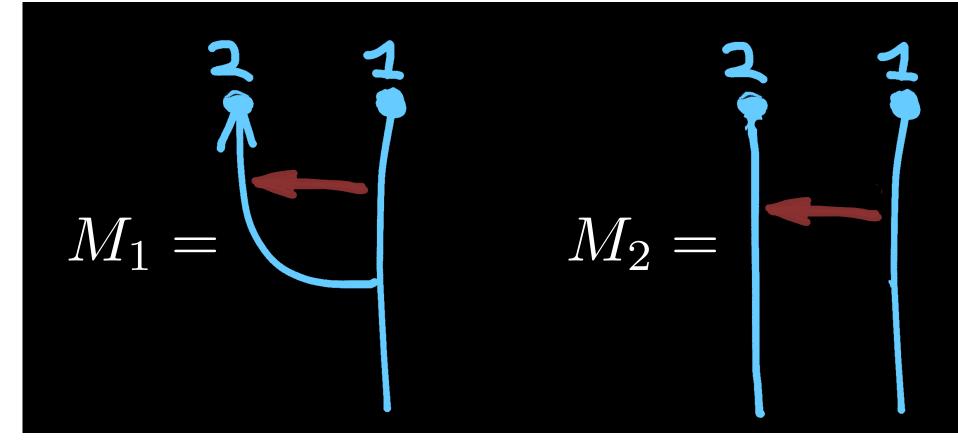
 - |z| > 10Very strong

Instead of calculating the Bayes factor we could use the probability of all tested models M_i and use them as weights (cf. Burnham and Anderson, 1998)

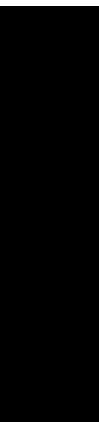
$$p_{i}^{*} = \frac{p(X|M_{i})}{\sum_{j} p(X|M_{j})}, \qquad \sum_{i} p_{i}^{*} = 1,$$
$$p_{1}^{*} = \frac{\exp(\ell_{1})}{\exp(\ell_{1}) + \exp(\ell_{2})} = 0.911$$
$$p_{2}^{*} = \frac{\exp(\ell_{2})}{\exp(\ell_{1}) + \exp(\ell_{2})} = 0.089$$

67/77 © 2019 Peter Beerli

(example continued)



$\ell_1 = -9638.61, \quad \ell_2 = -9641.01$



Marginal likelihood

Typically, it is rather difficult to calculate the marginal likelihoods with good accuracy, because most often we only approximate the posterior distribution using Markov chain Monte Carlo (MCMC). In MCMC we need to know only differences and therefore we typically do not need to calculate the denominator to calculate the Posterior distribution $p(\Theta|X)$:

$$p(\Theta|X,M) = \frac{p(\Theta)p(X|\Theta)}{p(X|M)} = \frac{p(\Theta)p(X|\Theta)}{\int_{\Theta} p(\Theta)p(X|\Theta)d\Theta}$$

where p(X|M) is the marginal likelihood, which we need for our model selection!

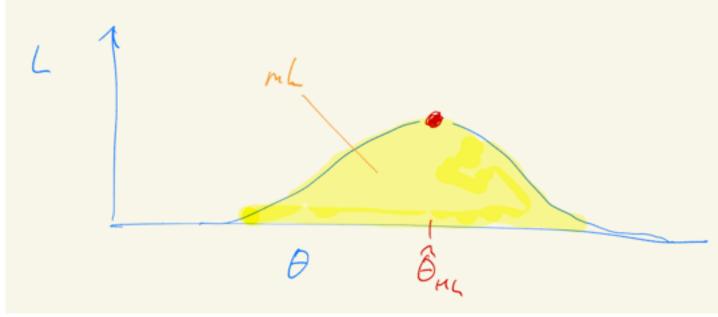
Estimation of the marginal likelihood

Harmonic mean estimator [Kass and Raftery 1995]: methods is easy and used in many programs, results are biased and overestimate the marginal likelihood, variance of estimates can be very large.

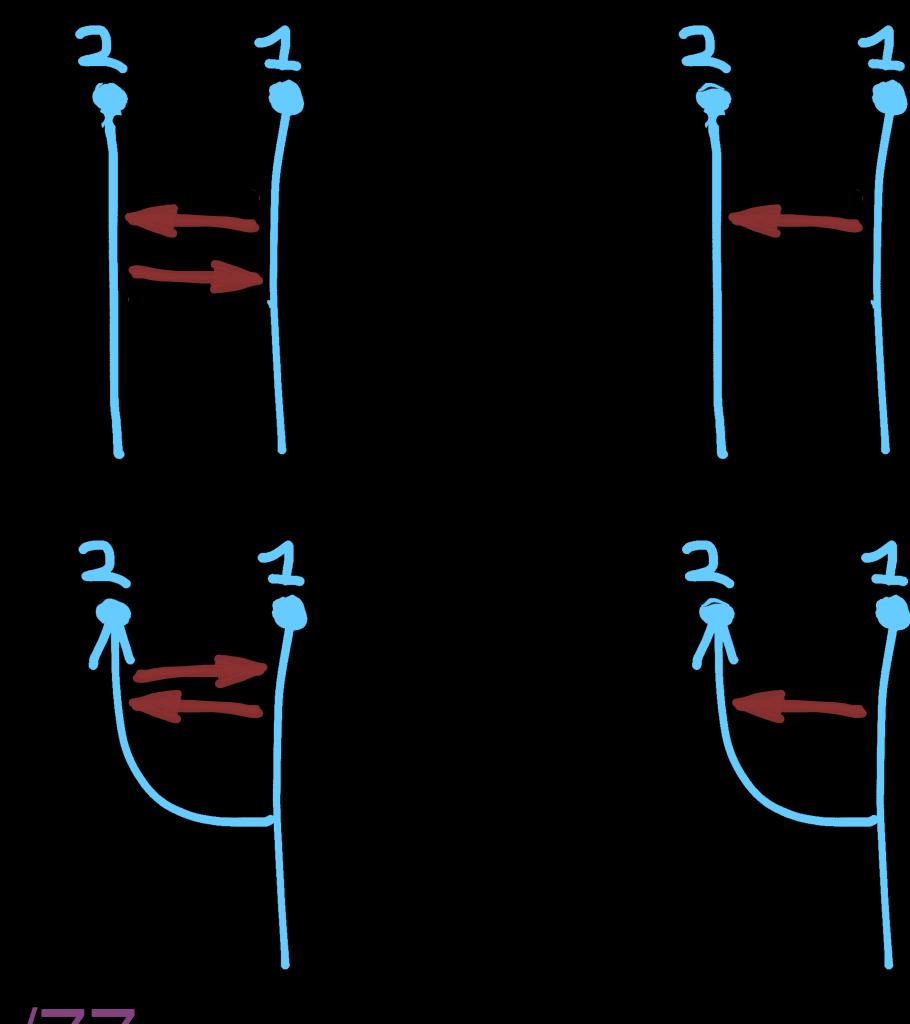
variance when MCMC runs were run long enough.

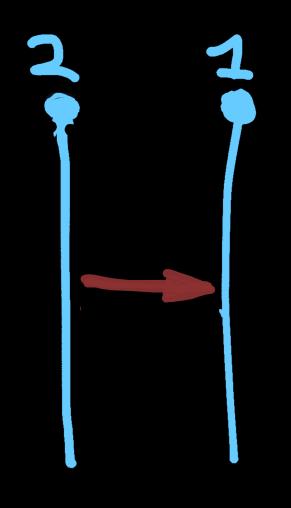
Stepping stone approach (Xie et al. 2011)

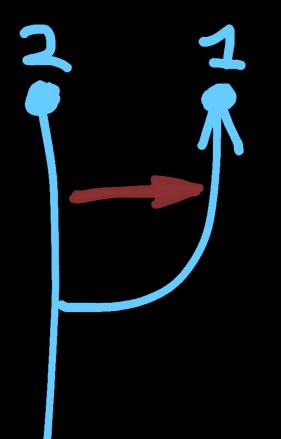
Thermodynamic integration (Path sampling) [Gelman and Meng 1997, Lartillot et al. 2006]: method is tedious to compute because several MCMC chains are needed. Results are accurate and reproducible with small

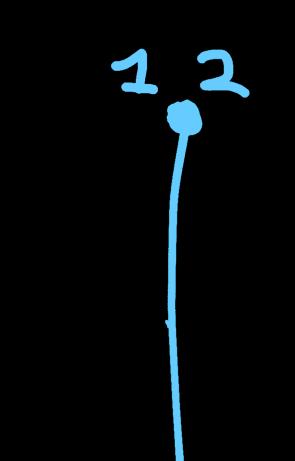


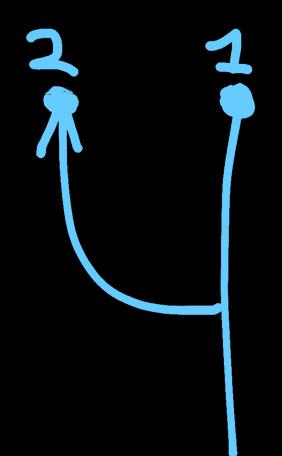
Population models







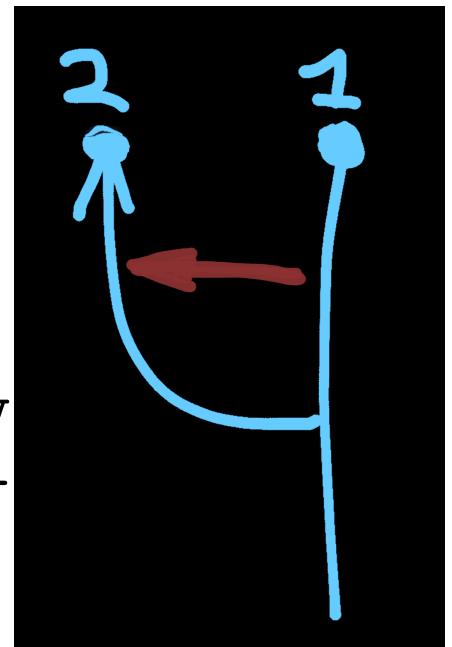




Simulated data

Two loci simulated from model x0Dx:			
Model	Log(mL)		
1: xxxx:	-9662.42		
2: $xDxx$:	-9661.98		
3: xxDx:	-9661.52		
4: $xd0x$:	-9656.51		
5: $xDOx$:	-9649.33		
6: xx0x:	-9648.93		
7: x0dx:	-9641.77		
8: x0xx:	-9641.01		
9: $xODx$:	-9638.69		

71/77 ©2019 Peter Beerli



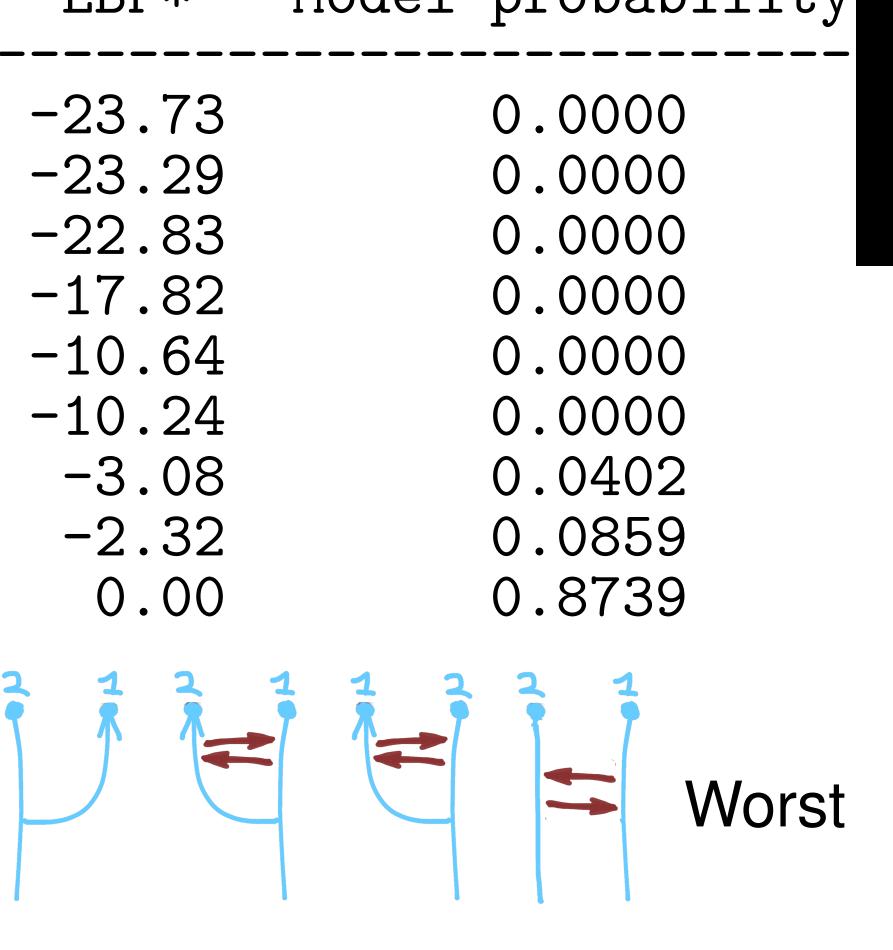
LBF*	Model-probability
-23.73	0.0000
-23.29	0.0000
-22.83	0.0000
-17.82	0.0000
-10.64	0.0000
-10.24	0.0000
-3.08	0.0402
-2.32	0.0859
	0 0700

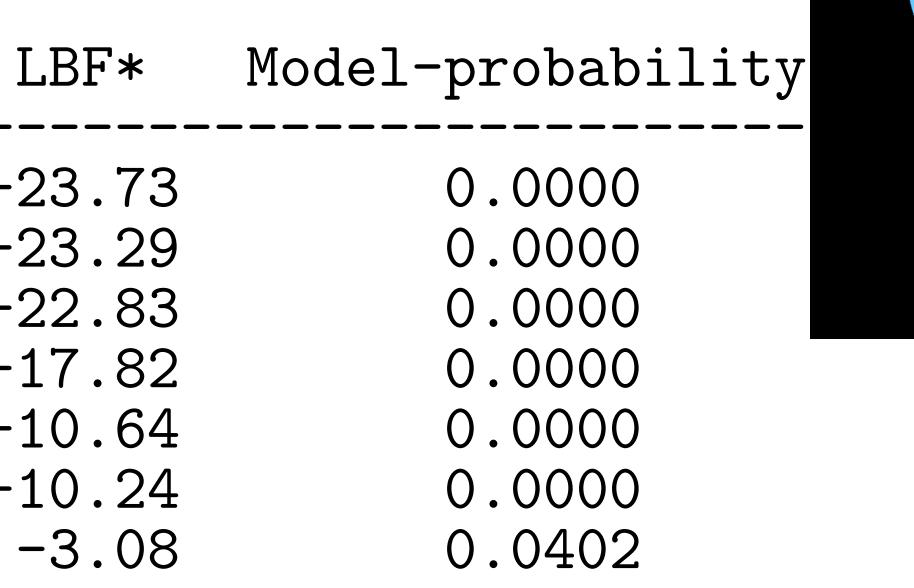
0.00

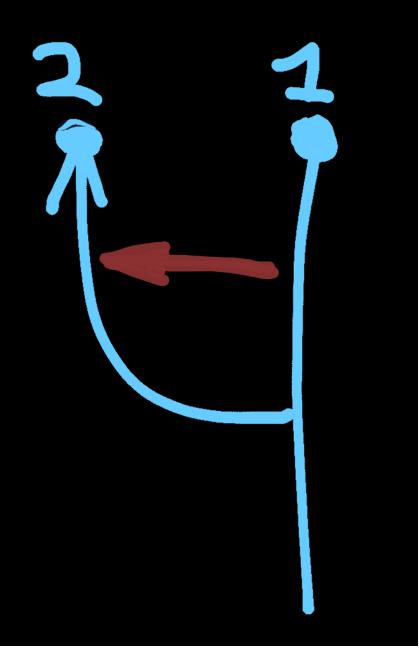
0.8739

Simulated data

Two loci simulated from Model	m model xODx: Log(mL)
1: xxxx: 2: xDxx: 3: xxDx: 4: xdOx: 5: xDOx: 5: xDOx: 6: xxOx: 7: xOdx: 8: xOxx: 9: xODx:	-9662.42 -9661.98 -9661.52 -9656.51 -9649.33 -9648.93 -9641.77 -9641.01 -9638.69
Best 72/77 ©2019 Peter Beerli	







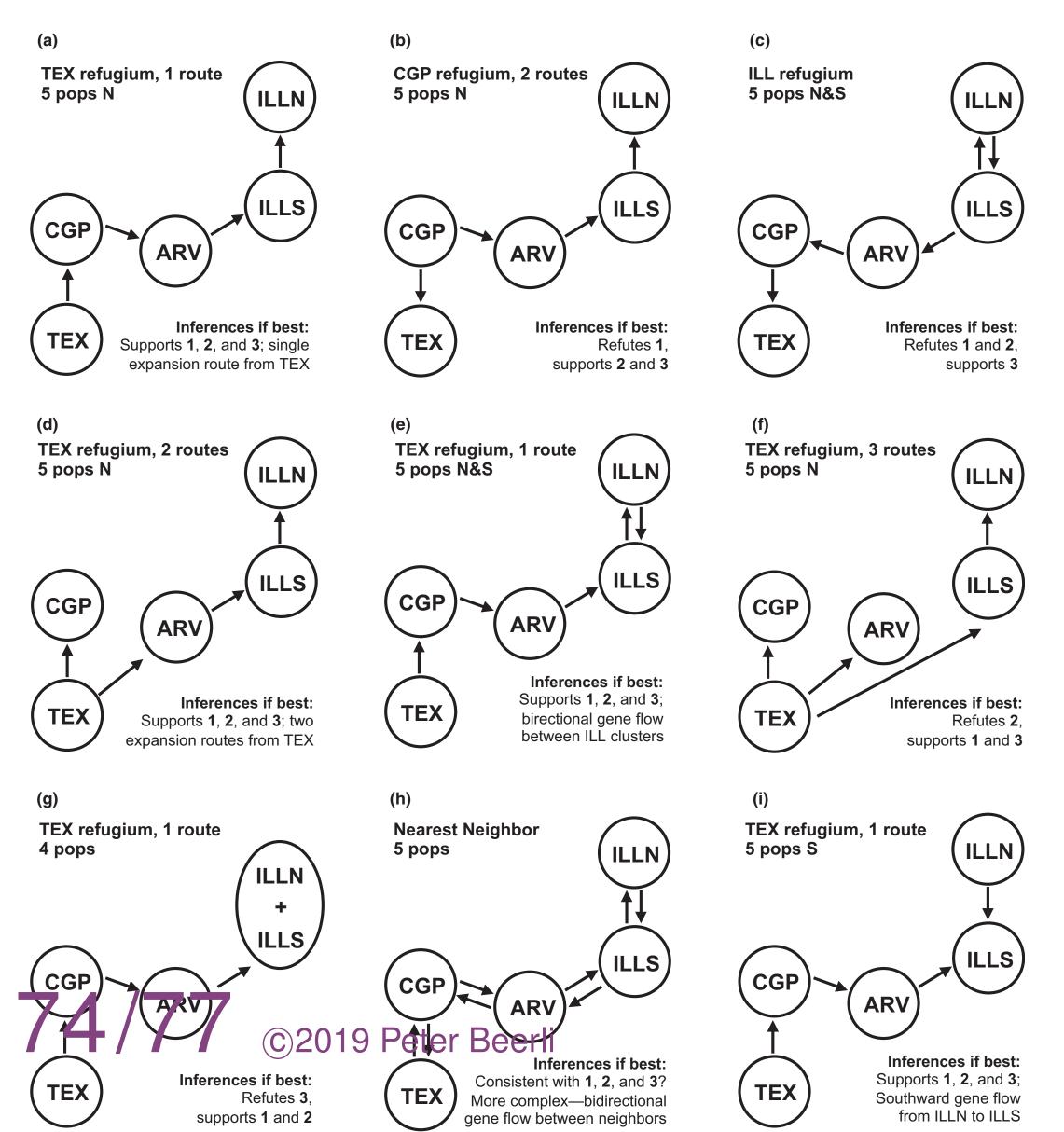
We did not include the correct model!

Two loci simulated fro	om model xODx:
Model	Log(mL)
1:xxxx:	-9662.42
2:xBxx:	-9661.98
3:xxBx:	-9661.52
4:xd0x:	-9656.51
5:xB0x:	-9649.33
6:xx0x:	-9648.93
7:x0dx:	-9641.77
8:x0xx:	-9641.01
Best 0.2019 Peter Beerli	

LBF*	Model-probability
-21.41 -20.97 -20.51 -15.50 -8.32 -7.92 -0.76 0.00	$\begin{array}{c} 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0002\\ 0.0002\\ 0.3185\\ 0.6811 \end{array}$
	Worst

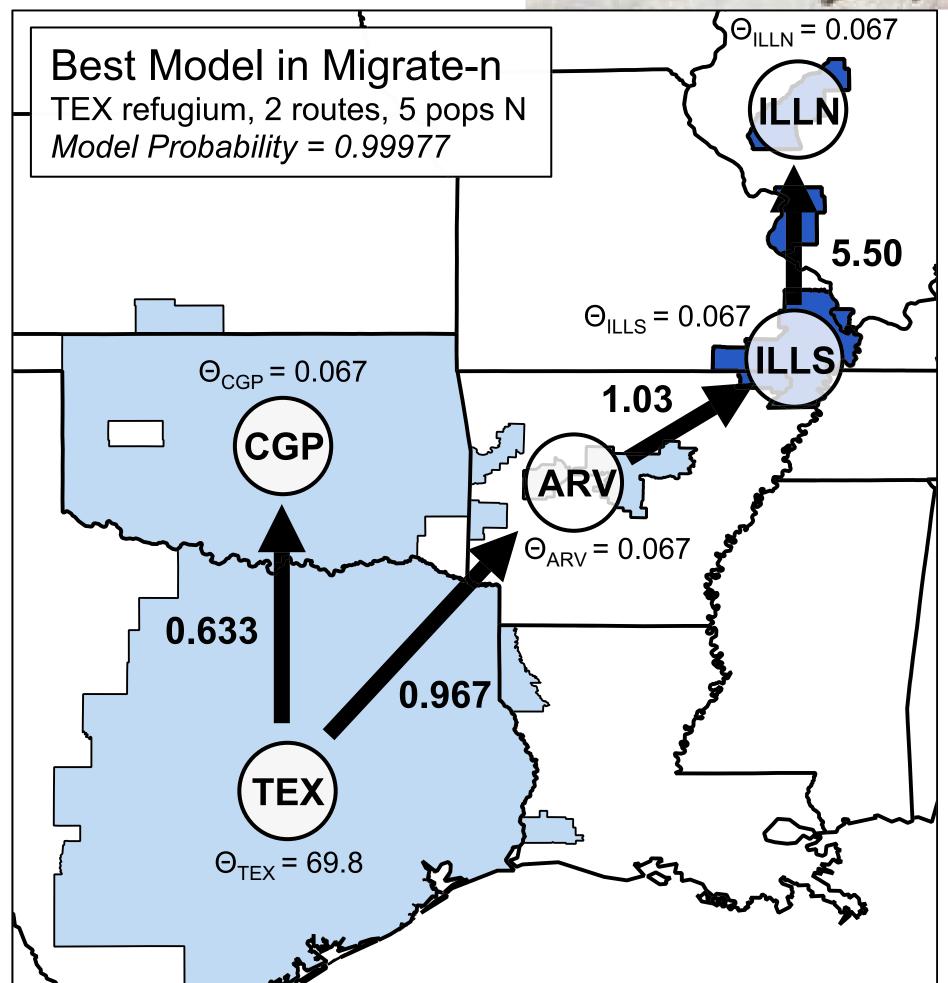
A real example

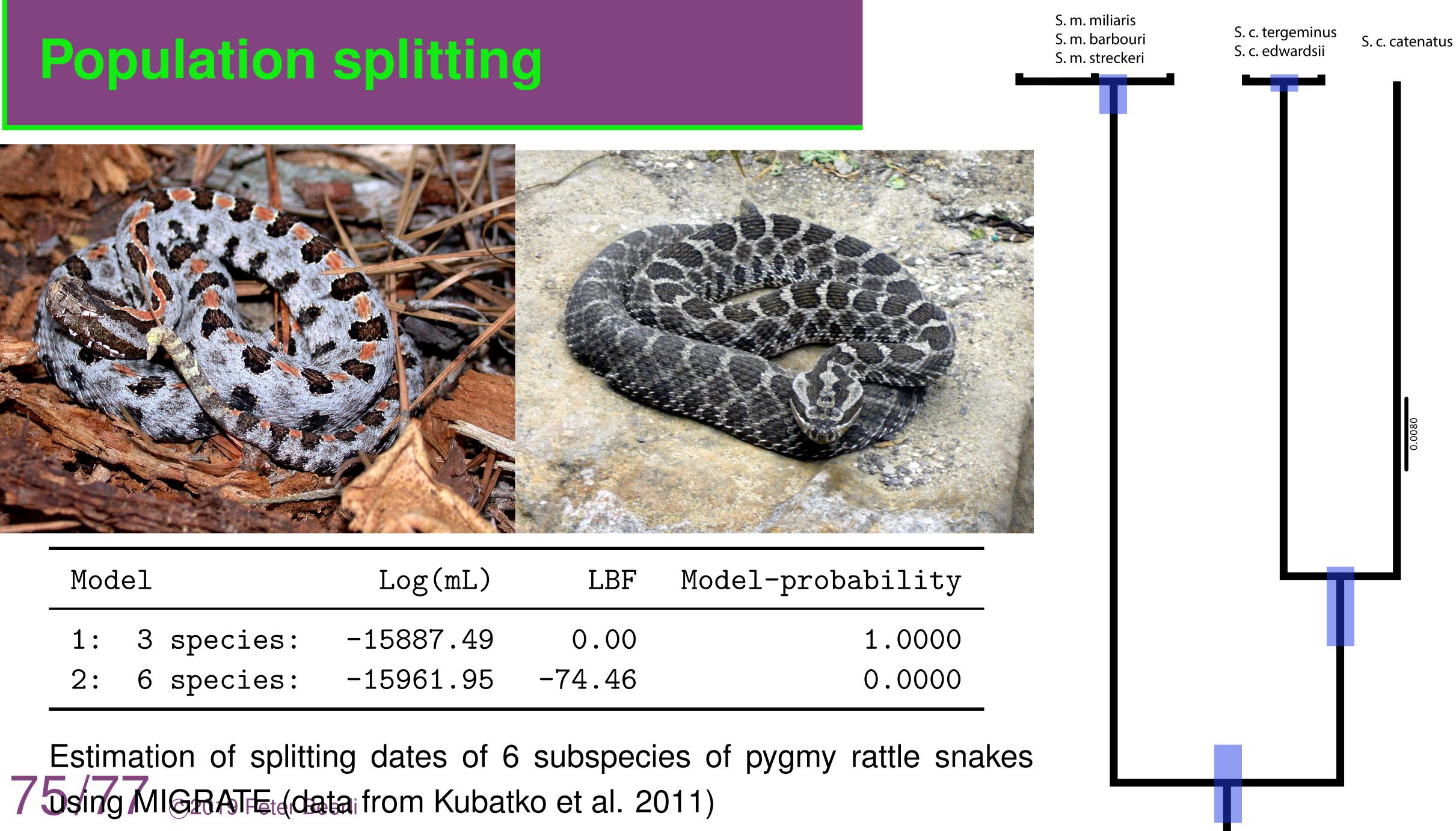
nore is deteolable genetic structure within r . minocholo consistent with the disjunct range



Frog picture: http://mdc.mo.gov/discover-nature/field-guide

Lisa N. Barrow, A. T. Bigelow, C. A. Phillips, and E. Moriarty Lemmon (2015) Phylogeographic inference using Bayesian model comparison a fragmented chorus frog across species complex. Molecular Ecology





Mod	lel	Log(mL)	LBF	Mod
1:	3 species:	-15887.49	0.00	
2:	6 species:	-15961.95	-74.46	

Summary

76/77 ©2019 Peter Beerli

You may be surprised that your favored model does not win in a model comparison competition, but figuring out the model order leads oftentimes to new insights about the problem. Models by themselves are not true or wrong. BUT they may not fit your data well, OR they describe your data even when you "know" that the model is insufficient.

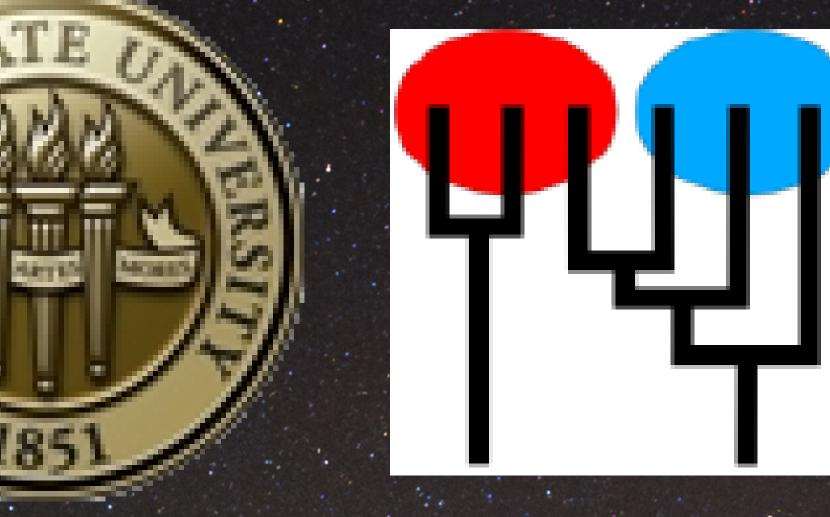
Thank you

Lucrezia Bieler

National Science Foundation

©2019 Peter Beerli

.



Michal Palzcewski, http://popgen.sc.fsu.edu Haleh Ashki, Justin Bricker, Somayeh Mashayekhi, Kyle Shaw

Credit: ESO/C. Malin

